首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new efficient type of Chebyshev wavelet is used to find the optimal solutions of general linear, continuous-time, multi-delay systems with quadratic performance indices and also to obtain the responses of linear time-delay systems. According to the new definition of Chebyshev wavelets, the operational matrices of integration, product, delay and inverse time and the integration matrix are derived. Furthermore, new operational matrices as the piecewise delay operational matrix and the stretch operational matrix of the desired Chebyshev wavelets are introduced to analyze systems with, in turn, piecewise constant delays and stretched arguments or proportional delays. Two novel algorithms based on newly Chebyshev wavelet method are proposed for the optimal control and the analysis of delay models. Some examples are solved to establish that the accuracy and applicability of Chebyshev wavelet method in delay systems are increased.  相似文献   

2.
A pseudospectral method for generating optimal trajectories of linear and nonlinear constrained dynamic systems is proposed. The method consists of representing the solution of the optimal control problem by an mth degree interpolating polynomial, using Chebyshev nodes, and then discretizing the problem using a cell-averaging technique. The optimal control problem is thereby transformed into an algebraic nonlinear programming problem. Due to its dynamic nature, the proposed method avoids many of the numerical difficulties typically encountered in solving standard optimal control problems. Furthermore, for discontinuous optimal control problems, we develop and implement a Chebyshev smoothing procedure which extracts the piecewise smooth solution from the oscillatory solution near the points of discontinuities. Numerical examples are provided, which confirm the convergence of the proposed method. Moreover, a comparison is made with optimal solutions obtained by closed-form analysis and/or other numerical methods in the literature.  相似文献   

3.
For the linear quadratic control problem, a lower bound for the performance index is established by simple methods. Using this bound, two important a posteriori error estimates are obtained, the first one measuring the deviation of the performance index, while the other is for the deviation of the state and control variables from the optimal solution. Continuous-time as well as discrete-time systems described by ordinary differential and difference equations are discussed. A numerical example is given for illustration.  相似文献   

4.
A numerical technique for determining the solution of the brachistochrone problem is presented. The brachistochrone problem is first formulated as a non-linear optimal control problem. Using Chebyshev nodes, we construct the Mth degree polynomial interpolation to approximate the state and the control variables. Application of this method results in the transformation of differential and integral expressions into some non-linear algebraic equations to which Newton-type methods can be applied. Simulation studies demonstrate computational advantages relative to existing methods in the literature.  相似文献   

5.
It is known that the optimal controller for a linear dynamic system disturbed by additive, independently distributed in time, not necessarily Gaussian, noise is a linear function of the state variables if the performance criterion is the expected value of a quadratic form. This result is known to hold also when the noise is Gaussian and is multiplied by a linear function of the state and/or control variables.In this paper it is proved that the optimal controller for a discrete-time linear dynamic system with quadratic performance criterion is a linear function of the state variables when the additive random vector is a nonlinear function of the state and/or control variables and not necessarily Gaussian noise which is independently distributed in time, provided only that the mean value of the random vector is zero (there is no loss of generality in assuming this) and the covariance matrix of the random vector is a quadratic function of the state and/or control variables. The above-mentioned known results emerge as special cases and certain nonlinear other special cases are exhibited.  相似文献   

6.
A method of topological grammars is proposed for multidimensional data approximation. For data with complex topology we define a principal cubic complex of low dimension and given complexity that gives the best approximation for the dataset. This complex is a generalization of linear and non-linear principal manifolds and includes them as particular cases. The problem of optimal principal complex construction is transformed into a series of minimization problems for quadratic functionals. These quadratic functionals have a physically transparent interpretation in terms of elastic energy. For the energy computation, the whole complex is represented as a system of nodes and springs. Topologically, the principal complex is a product of one-dimensional continuums (represented by graphs), and the grammars describe how these continuums transform during the process of optimal complex construction. This factorization of the whole process onto one-dimensional transformations using minimization of quadratic energy functionals allows us to construct efficient algorithms.  相似文献   

7.
** Email: shtsai{at}mail.ncku.edu.tw In this paper, an optimal hybrid tracking control problem forcontinuous neutral time-delay systems is formulated and studied.An optimal linear integral quadratic cost function that hasa high-gain property is used for tracking control specification.Two interpolation methods are applied to directly convert theoriginal analog neutral time-delay system into an equivalentdigital retarded time-delay system, and meanwhile convert thecontinuous-time quadratic cost function into a discretized form.Then, an extended state vector is constructed for an associateextended discrete-time optimal control problem without timedelay. Using the standard discrete-time linear-quadratic optimalcontrol theory and an indirect digital redesign technique witha predictive feature, an effective digital tracker is designedfor the original analog neutral time-delay system. An exampleis finally given for illustrating the effectiveness of the newtracker design method.  相似文献   

8.
In this paper, we state and prove a new formula expressing explicitly the derivatives of shifted Chebyshev polynomials of any degree and for any fractional-order in terms of shifted Chebyshev polynomials themselves. We develop also a direct solution technique for solving the linear multi-order fractional differential equations (FDEs) with constant coefficients using a spectral tau method. The spatial approximation with its fractional-order derivatives (described in the Caputo sense) are based on shifted Chebyshev polynomials TL,n(x) with x ∈ (0, L), L > 0 and n is the polynomial degree. We presented a shifted Chebyshev collocation method with shifted Chebyshev–Gauss points used as collocation nodes for solving nonlinear multi-order fractional initial value problems. Several numerical examples are considered aiming to demonstrate the validity and applicability of the proposed techniques and to compare with the existing results.  相似文献   

9.
In this paper, some realistic multi-period production–inventory models are formulated for deteriorating items with known dynamic demands for optimal productions. Here, the rates of production are time dependent (quadratic/linear) or constant expressed by a Chebyshev polynomial and considered as a control variable. The models are solved using Chebyshev spectral approximations, the El-Hawary technique and a genetic algorithm (GA). The models have been illustrated by numerical data. The optimum results for different production functions are presented in both tabular and graphical forms.  相似文献   

10.
A method for finding the optimal control of linear singular systems with a quadratic cost functional using piecewise linear polynomial functions is discussed. The state variable, state rate, and the control vector are expanded in piecewise linear polynomial functions with unknown coefficients. The relation between the coefficients of the state rate with state variable is provided and the necessary condition of optimality is derived as a linear system of algebraic equations in terms of the unknown coefficients of the state and control vectors. A numerical example is included to demonstrate the validity and the applicability of the technique. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The optimal control of transverse vibration of two Euler–Bernoulli beams coupled in parallel by discrete springs is considered. An index of performance is formulated which consists of a modified energy functional of two coupled structures at a specified time and penalty functions involving the point control forces. The minimization of the performance index over these forces is subject to the equation of motion governing the structural vibrations, the imposed initial condition as well as the boundary conditions. By use of the modal space technique, the optimal control of distributed parameter systems is simplified into the optimal control of a linear time-invariant lumped-parameter systems. A computationally attractive method based on Legendre wavelets in time domain for solving the optimal control of the lumped parameter systems for any finite interval is proposed. Legendre wavelet integral operational matrix and the properties of a Kronecker product are used to find the approximated optimal trajectory and optimal law of the linear systems with respect to a quadratic cost function by only solving a linear system of algebraic equations. This method provides a straightforward and convenient approach for digital computation. A numerical example is provided to demonstrate the applicability and effectiveness of the proposed method.  相似文献   

12.
The classical finite-dimensional linear-quadratic optimal control problem is revisited. A new linear-quadratic control problem with linear state penalty terms but without quadratic state penalty terms, is introduced. An optimal control exists and the closed-form optimal solution is given. It is remarkable that feedback action plays no role and state information does not feature in the optimal control. The optimal cost function, rather than being quadratic, is linear in the initial state.  相似文献   

13.
In this paper, we investigate the L ??(L 2)-error estimates and superconvergence of the semidiscrete mixed finite elementmethods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k ?? 0). We derive error estimates for approximation of both state and control. Moreover, we present the superconvergence analysis for mixed finite element approximation of the optimal control problems.  相似文献   

14.
This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear quadratic control problem where the performance functional is the integral of a quadratic differential form. We look for characterizations of the set of stationary trajectories and of the set of local minimal trajectories with respect to compact support variations, turning out that they are equal if the system is dissipative. Finally we provide conditions for regular implementability of this set of trajectories and give an explicit representation of an optimal controller.  相似文献   

15.
《Fuzzy Sets and Systems》2004,143(2):189-209
In theory, an Algebraic Riccati Equation (ARE) scheme applicable to robust H quadratic stabilization problems of a class of uncertain fuzzy systems representing a nonlinear control system is investigated. It is proved that existence of a set of solvable AREs suffices to guarantee the quadratic stabilization of an uncertain fuzzy system while satisfying H-norm bound constraint. It is also shown that a stabilizing control law is reminiscent of an optimal control law found in linear quadratic regulator, and a linear control law can be immediately discerned from the stabilizing one. In practice, the minimal solution to a set of parameter dependent AREs is somewhat stringent and, instead, a linear matrix inequalities formulation is suggested to search for a feasible solution to the associated AREs. The proposed method is compared with the existing fuzzy literature from various aspects.  相似文献   

16.
In this paper, we consider a class of optimal control problems which is governed by nonsmooth functional inequality constraints involving convolution. First, we transform it into an equivalent optimal control problem with smooth functional inequality constraints at the expense of doubling the dimension of the control variables. Then, using the Chebyshev polynomial approximation of the control variables, we obtain an semi-infinite quadratic programming problem. At last, we use the dual parametrization technique to solve the problem.  相似文献   

17.
A general linear quadratic (LQ) optimal control problem, with the dynamic system being governed by a higher-order vector-valued ordinary differential equation and with inequality-constraints on the state vector and/or the control input, is studied. Based on an explicit characterization result, optimal solutions are obtained in closed-form. A constructive method for finding the closed-form optimal solutions is proposed, and two illustrative examples are included  相似文献   

18.
A semi-analytical direct optimal control solution for strongly excited and dissipative Hamiltonian systems is proposed based on the extended Hamiltonian principle, the Hamilton-Jacobi-Bellman (HJB) equation and its variational integral equation, and the finite time element approximation. The differential extended Hamiltonian equations for structural vibration systems are replaced by the variational integral equation, which can preserve intrinsic system structure. The optimal control law dependent on the value function is determined by the HJB equation so as to satisfy the overall optimality principle. The partial differential equation for the value function is converted into the integral equation with variational weighting. Then the successive solution of optimal control with system state is designed. The two variational integral equations are applied to sequential time elements and transformed into the algebraic equations by using the finite time element approximation. The direct optimal control on each time element is obtained respectively by solving the algebraic equations, which is unconstrained by the system state observed. The proposed control algorithm is applicable to linear and nonlinear systems with the quadratic performance index, and takes into account the effects of external excitations measured on control. Numerical examples are given to illustrate the optimal control effectiveness.  相似文献   

19.
We propose a method for constructing an optimal control of a linear system in a variational problem with fixed time for the control process, fixed endpoints of the phase trajectory, and a quadratic functional. The method is based on the use of first integrals of the equations of unperturbed motion. We obtain sufficient conditions for complete controllability of the linear nonstationary system.  相似文献   

20.
This paper presents the application of the multiple shooting technique to minimax optimal control problems (optimal control problems with Chebyshev performance index). A standard transformation is used to convert the minimax problem into an equivalent optimal control problem with state variable inequality constraints. Using this technique, the highly developed theory on the necessary conditions for state-restricted optimal control problems can be applied advantageously. It is shown that, in general, these necessary conditions lead to a boundary-value problem with switching conditions, which can be treated numerically by a special version of the multiple shooting algorithm. The method is tested on the problem of the optimal heating and cooling of a house. This application shows some typical difficulties arising with minimax optimal control problems, i.e., the estimation of the switching structure which is dependent on the parameters of the problem. This difficulty can be overcome by a careful application of a continuity method. Numerical solutions for the example are presented which demonstrate the efficiency of the method proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号