首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Dirichlet problem is considered in a three-dimensional domain filled with a piecewise homogeneous medium. The uniqueness of its solution is proved. A system of Fredholm boundary integral equations of the second kind is constructed using the method of surface potentials, and a system of boundary integral equations of the first kind is derived directly from Green’s identity. A technique for the numerical solution of integral equations is proposed, and results of numerical experiments are presented.  相似文献   

2.

Galerkin boundary element methods for the solution of novel first kind Steklov-Poincaré and hypersingular operator boundary integral equations with nonlinear perturbations are investigated to solve potential type problems in two- and three-dimensional Lipschitz domains with nonlinear boundary conditions. For the numerical solution of the resulting Newton iterate linear boundary integral equations, we propose practical variants of the Galerkin scheme and give corresponding error estimates. We also discuss the actual implementation process with suitable preconditioners and propose an optimal hybrid solution strategy.

  相似文献   


3.
Here we apply the boundary integral method to several plane interior and exterior boundary value problems from conformal mapping, elasticity and fluid dynamics. These are reduced to equivalent boundary integral equations on the boundary curve which are Fredholm integral equations of the first kind having kernels with logarithmic singularities and defining strongly elliptic pseudodifferential operators of order - 1 which provide certain coercivity properties. The boundary integral equations are approximated by Galerkin's method using B-splines on the boundary curve in connection with an appropriate numerical quadrature, which yields a modified collocation scheme. We present a complete asymptotic error analysis for the fully discretized numerical equations which is based on superapproximation results for Galerkin's method, on consistency estimates and stability properties in connection with the illposedness of the first kind equations in L2. We also present computational results of several numerical experiments revealing accuracy, efficiency and an amazing asymptotical agreement of the numerical with the theoretical errors. The method is used for computations of conformal mappings, exterior Stokes flows and slow viscous flows past elliptic obstacles.  相似文献   

4.
A version of boundary integral equations of the first kind in dynamic problems of the theory of elasticity is proposed, based on an investigation of the analytic properties of the Fourier transformant of the displacement vector, rather than on fundamental solutions. A system of three boundary integral equations of the first kind with Fredholm kernels is constructed, and the equivalence of the initial boundary-value problem on the vibrations of a bounded region and the system of boundary integral equations obtained is investigated. A version of the numerical realization, which combines the ideas of the classical method of boundary elements and the Tikhonov regularization method, is proposed. The results of numerical experiments are given.  相似文献   

5.
We investigate a free boundary value problem of the stationary Stokes' equations. In a previous paper adapted hydrodynamical potentials have been constructed and their jump relations have been discussed. Here we study a direct method to obtain an equivalent boundary integral equations' system of the first kind. Its solution properties are investigated in the framework of strongly elliptic pseudodifferential operators. For numerical purposes a suitable representation formula for the variational equation is given in terms of integro-differential operators which avoids the evaluation of hypersingular integrals.  相似文献   

6.
The numerical solution of linear Volterra integral equations of the second kind is discussed. The kernel of the integral equation may have weak diagonal and boundary singularities. Using suitable smoothing techniques and polynomial splines on mildly graded or uniform grids, the convergence behavior of the proposed algorithms is studied and a collection of numerical results is given.  相似文献   

7.
In this study one of the new techniques is used to solve numerical problems involving integral equations known as Sinc-collocation method. This method has been shown to be a powerful numerical tool for finding accurate solutions. So, in this article, some properties of the Sinc-collocation method required for our subsequent development are given and are utilized to reduce integral equation of the first kind to some algebraic equations. Then by a theorem we show error in the approximation of the solution decays at an exponential rate. Finally, numerical examples are included to demonstrate the validity and applicability of the technique.  相似文献   

8.
In the numerical treatment of integral equations of the first kind using boundary element methods (BEM), the author and E. P. Stephan have derived a posteriori error estimates as tools for both reliable computation and self-adaptive mesh refinement. So far, efficiency of those a posteriori error estimates has been indicated by numerical examples in model situations only. This work affirms efficiency by proving the reverse inequality. Based on best approximation, on inverse inequalities and on stability of the discretization, and complementary to our previous work, an abstract approach yields a converse estimate. This estimate proves efficiency of an a posteriori error estimate in the BEM on quasi--uniform meshes for Symm's integral equation, for a hypersingular equation, and for a transmission problem.

  相似文献   


9.
凹角型区域椭圆边值问题的自然边界归化   总被引:3,自引:0,他引:3  
In this paper, the natural boundary reduction for some elliptic boundary value problems with concave angle domains and their natural boundary methods are investigated. The natural integral equations and the Poisson integral formulae are given. The finite element methods of the natural integral equations are discussed in details. The convergences of the approximate solutions and their error estimates are obtained. Finally, some numerical examples are presented to show that our methods are effective.  相似文献   

10.
The collocation method for the numerical solution of Fredholm integral equations of the second kind is applied, properly modified, to the numerical solution of Cauchy type singular integral equations of the first or the second kind but with constant coefficients. This direct method of numerical solution of Cauchy type singular integral equations is compared afterwards with the corresponding method resulting from applying the collocation method to the Fredholm integral equation of the second kind equivalent to the Cauchy type singular integral equation, as well as with another method, based also on the regularization procedure, for the numerical solution of the same class of equations. Finally, the convergence of the method is discussed.  相似文献   

11.
In this paper, we present a numerical method for solving Volterra integral equations of the second kind (VK2), first kind (VK1) and even singular type of these equations. The proposed method is based on approximating unknown function with Bernstein’s approximation. This method using simple computation with quite acceptable approximate solution. Furthermore we get an estimation of error bound for this method. For showing efficiency of this method we use several examples.  相似文献   

12.
Boundary integral equation methods are considered for computing dc fields in three-dimensional regions filled with a piecewise-homogeneous medium. The problem is formulated and a system of Fredholm boundary integral equations of first kind is constructed, following directly from Green’s formula. The numerical solution stages are considered in detail, including construction and triangulation of the numerical surfaces, evaluation of surface integrals, and solution of a system of block-matrix equations. Translated from Prikladnaya Matematika i Informatika, No. 30, pp. 35–45, 2008.  相似文献   

13.
In this paper, a computational scheme is proposed to estimate the solution of one- and two-dimensional Fredholm-Hammerstein integral equations of the second kind. The method approximates the solution using the discrete Galerkin method based on the moving least squares (MLS) approach as a locally weighted least squares polynomial fitting. The discrete Galerkin technique for integral equations results from the numerical integration of all integrals in the system corresponding to the Galerkin method. Since the proposed method is constructed on a set of scattered points, it does not require any background meshes and so we can call it as the meshless local discrete Galerkin method. The implication of the scheme for solving two-dimensional integral equations is independent of the geometry of the domain. The new method is simple, efficient and more flexible for most classes of nonlinear integral equations. The error analysis of the method is provided. The convergence accuracy of the new technique is tested over several Hammerstein integral equations and obtained results confirm the theoretical error estimates.  相似文献   

14.
A numerical boundary integral scheme is proposed for the solution of the system of field equations of plane, linear elasticity in stresses for homogeneous, isotropic media in the domain bounded by an ellipse under mixed boundary conditions. The stresses are prescribed on one half of the ellipse, while the displacements are given on the other half. The method relies on previous analytical work within the Boundary Integral Method [1], [2].The considered problem with mixed boundary conditions is replaced by two subproblems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way and the problem at this stage is reduced to the solution of a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution inside the domain, and the unknown boundary values of stresses or displacements on proper parts of the boundary.On the basis of the obtained results, it is inferred that the tangential stress component on the fixed part of the boundary has a singularity at each of the two separation points, thought to be of logarithmic type. A tentative form for the singular solution is proposed to calculate the full solution in bulk directly from the given boundary conditions using the well-known Boundary Collocation Method. It is shown that this addition substantially decreases the error in satisfying the boundary conditions on some interval not containing the singular points.The obtained results are discussed and boundary curves for unknown functions are provided, as well as three-dimensional plots for quantities of practical interest. The efficiency of the used numerical schemes is discussed, in what concerns the number of boundary nodes needed to calculate the approximate solution.  相似文献   

15.
The main purpose of this article is to describe a numerical scheme for solving two-dimensional linear Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on radial basis functions (RBFs) constructed on a set of disordered data. The proposed method does not require any background mesh or cell structures, so it is meshless and consequently independent of the geometry of domain. This approach reduces the solution of the two-dimensional integral equation to the solution of a linear system of algebraic equations. The error analysis of the method is provided. The proposed scheme is also extended to linear mixed Volterra–Fredholm integral equations. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the new technique.  相似文献   

16.
A numerical method to solve Abel-type integral equations of first kind is given. In this paper we suggest the research of a numerical solution for Abel-type integral equations of the first kind, by using a collocation method employing an interpolatory product-quadrature formula with a trigonometric polynomial of the first order. Some results of numerical examples are reported.  相似文献   

17.
Multilevel methods are popular for the solution of well-posed problems, such as certain boundary value problems for partial differential equations and Fredholm integral equations of the second kind. However, little is known about the behavior of multilevel methods when applied to the solution of linear ill-posed problems, such as Fredholm integral equations of the first kind, with a right-hand side that is contaminated by error. This paper shows that cascadic multilevel methods with a conjugate gradient-type method as basic iterative scheme are regularization methods. The iterations are terminated by a stopping rule based on the discrepancy principle.  相似文献   

18.
位势平面问题的新的规则化边界积分方程   总被引:1,自引:0,他引:1  
广泛实践集中在直接变量边界积分方程的规则化研究,其本质是利用简单解消除边界积分的奇异性.然而,至今关于平面位势问题的第一类边界积分方程的规则化研究尚未涉足.致力于间接变量边界积分方程的规则化方法研究,基于一种新的思想和观点,确立平面位势问题的间接变量规则边界积分方程,它不包含CPV强奇异积分和HFP超奇异积分.数值算例表明现在的方法可取得很好的精度和效率,特别是边界量的计算.  相似文献   

19.
In this paper we propose a fully discretized version of the collocation method applied to integral equations of the first kind with logarithmic kernel. After a stability and convergence analysis is given, we prove the existence of an asymptotic expansion of the error, which justifies the use of Richardson extrapolation. We further show how these expansions can be translated to a new expansion of potentials calculated with the numerical solution of a boundary integral equation such as those treated before. Some numerical experiments, confirming our theoretical results, are given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
This paper investigates a numerical method for solving two-dimensional nonlinear Fredholm integral equations of the second kind on non-rectangular domains. The scheme utilizes the shape functions of the moving least squares (MLS) approximation constructed on scattered points as a basis in the discrete collocation method. The MLS methodology is an effective technique for approximating unknown functions which involves a locally weighted least square polynomial fitting. The proposed method is meshless, since it does not need any background mesh or cell structures and so it is independent of the geometry of the domain. The scheme reduces the solution of two-dimensional nonlinear integral equations to the solution of nonlinear systems of algebraic equations. The error analysis of the proposed method is provided. The efficiency and accuracy of the new technique are illustrated by several numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号