首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solid state reactions of MMoO4 (M = Mg2+, Fe2+, and Ni2+) and orthorhombic TeO2 were investigated. A new metal telluromolybdate MgTeMoO6 was obtained in the case of Mg; its structure belongs to the orthorhombic system with unit-cell dimensions a = 5.262Å, b = 5.028 Å, c = 8.880 Å. Fe2(MoO4)3 and a new compound were formed in the case of Fe. The new compound is made up with Fe3+ ions and its chemical formula cannot be recognized as FeTeMoO6. In the case of Ni a complex reaction mixture is obtained. An explanation is given of the ability of M2+ ions to form the metal telluromolybdates. The catalytic properties of MgTeMoO6 are discussed and compared to those of the other metal telluromolybdates.  相似文献   

2.
To realize highly selective relay recognition of Fe3+ and H2PO4- ions, a simple benzimidazole-based fluorescent chemosensor(L) was designed and synthesized. Sensor L displays rapid, highly selective, and sensitive recognition to Fe3+ in H2O/DMSO(1:1, v/v) solutions. The in situ-generated L-Fe3+ complex solution exhibits a fast response and high selectivity toward dihydrogen phosphate anion via the Fe3+ displacement approach. The detection limits of sensor L to Fe3+ and L-Fe3+complex to H2PO4- anion were estimated to be 1.0 × 10-9 mol/L. Notably, the sensor was retrievable to indicate dihydrogen phosphate anions with Fe3+, and H2PO4-, in turn, increased. This successive recognition feature of sensor L makes it a potential utility for Fe3+ and H2PO4- anion detection in aqueous media.  相似文献   

3.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

4.
A new dual chemosensor (TTF-PBA) for Fe3+ and Cu2+ in different signal pathways was designed and synthesized. The absorption spectrum, fluorescence spectrum and cyclic voltammograms changed in the presence of Cu2+ and Fe3+. The optical color changed within 5 s from yellow to orange upon the addition of Cu2+, and it changed to dark yellow when Fe3+ existed. The cyclic voltammogram of Cu2+/TTF-PBA changed from Eox = 0.50 V, Ered = 0.32 V to Eox = 0.64 V, Ered = 0.80 V (vs Ag/AgCl) upon the addition of 2.0 equiv. Cu2+. As for Fe3+/TTF-PBA, its oxidation wave disappeared, and its reduction wave appeared at Ered = ?0.59 V (vs Ag/AgCl) upon the addition of 4.0 equv. Fe3+. The sensor displayed high selectivity for Cu2+ and Fe3+ over other ions including Pb2+, Zn2+, Ni2+, Ag+, Cr3+, Mn2+, Al3+, Co2+, Pd2+, Hg2+, Fe2+, Cd2+, Ce3+, Bi3+ and Au3+, the detection limits for Cu2+ and Fe3+ ion reached as low as 5.33 × 10?7 mol/L and 5.34 × 10?7 mol/L, respectively. Furthermore, when Fe3+ existed, Cu2+ can be detected sequentially by the sensor through the absorption spectrum and the color change observed by naked-eyes.  相似文献   

5.
A new dinuclear RuII polypyridyl complex, [(bpy)2Ru(H2bpip)Ru(bpy)2]4+ ( RuH2bpip , bpy=2,2‐bipyridine, H2bpip=2,6‐pyridyl(imidazo[4,5‐f][1,10]phenanthroline), was developed to act as a one‐ and two‐photon luminescent probe for biological Cu2+ detection. This RuII complex shows a significant two‐photon absorption cross section (400 GM) and displays a remarkable one‐ and two‐photon luminescence switch in the presence of Cu2+ ions. Importantly, RuH2bpip can selectively recognise Cu2+ in aqueous media in the presence of other abundant cellular cations (such as Na+, K+, Mg2+, and Ca2+), trace metal ions in organisms (such as Zn2+, Ag+, Fe3+, Fe2+, Ni2+, Mn2+, and Co2+), prevalent toxic metal ions in the environment (such as Cd2+, Hg2+, and Cr3+), and amino acids, with high sensitivity (detection limit≤3.33×10?8 M ) and a rapid response time (≤15 s). The biological applications of RuH2bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2bpip was, therefore, employed as a sensing probe for the detection of Cu2+ in living cells and zebrafish.  相似文献   

6.
The polymerization of acrylonitrile (AN) initiated by oxygen-ascorbic acid (AA)-ferric ion system was studied in dil. HNO3 at 40°. The rate of polymerization, Rp, was found gravimetrically. In the [Fe3+] range, (2–5 × 10?5 M, Rp was proportional to [AN]1.5 ± 0.05, [O2]0.5 ± 0.02 [AA]0 and [Fe3+]0; for [Fe3+] = (5–30) × 10?5 M, it was proportional to [AN]1.8 ± 0.05, [O2]0.6 ± 0.02, [AA]0 and [Fe3+]?0.9 ± 0.05. A plausible reaction scheme is proposed and rate law presented to explain these results. Rp increased with ionic strength and [HNO3] (up to ~0.25 M). An initial rate increase with temperature followed by a decrease was noticed. Chain lengths of the polymers were determined viscometrically.  相似文献   

7.
A new glucose-based C2-derivatized colorimetric chemo-sensor (L1) has been synthesized by a one-step condensation of glucosamine and 2-hydroxy-1-naphthaldehyde for the recognition of transition metal ions. Among the eleven metal ions studied, viz., Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, L1 results in visual colour change only in the presence of Fe2+, Fe3+and Cu2+ in methanol. However, in an aqueous HEPES buffer (pH 7.2) it is only the Fe3+ that gives a distinct visual colour change even in the presence of other metal ions, up to a concentration of 280 ppb. The changes have been explained based on the complex formed, and the composition has been determined to be 2:1 between L1 and Fe3+ based on Job’s plot as well as ESI MS. The structure of the proposed complex has been derived based on HF/6-31G calculations.  相似文献   

8.
The solubility of carefully characterized magnetite, Fe3O4, in dilute aqueous solutions saturated with H2 has been measured at temperatures from 100 to 300°C in a flow apparatus. Solution compositions included either HCl or NaOH molalities of up to 1 and 40 mmole-kg?1, respectively, and H2 molalities of 0.0779, 0.779, and 8.57 mmole-kg?1. The dependence of the equilibrium solubility on the pH and reduction potential were fitted to a scheme of soluble ferrous and ferric species consisting of Fe2+, FeOH+, Fe(OH)2, Fe(OH) 3 ? , Fe(OH)3, and Fe(OH) 4 ? . Solubility products from the fit, corresponding to the reactions $$\tfrac{1}{3}Fe_3 O_4 + (2 - b)H^ + + \tfrac{1}{3}H_2 \rightleftharpoons Fe(OH)_b^{2 - b} + (4/3 - b)H_2 O$$ and $$\tfrac{1}{3}Fe_3 O_4 + (3 - b)H^ + \rightleftharpoons Fe(OH)_b^{3 - b} + \tfrac{1}{6}H_2 + (4/3 - b)H_2 O$$ were used to derive thermodynamic constants for each species. The extrapolared value for the Gibbs energy of formation of Fe2+ at 25°C is ?88.92±2.0 kJ-mole?1, consistent with standard reduction potentials in the range Eo(Fe2+)=?0.47±0.01 V. The temperature coefficient of the equilibrium Fe molality, (?m(Fe, sat.)/?T)m(H2).m(NaOH), changes from negative to positive as the NaOH molality is increased to the point where Fe(OH) 3 ? and Fe(OH) 4 ? predominate.  相似文献   

9.
The oxyfluoride garnets of formula Y3Fe5?xMxO12?xFx and Gd3Fe5?xMxO12?xFx (M = 3d transition element) result from partial substitution of O2? by F? in Y3Fe5O12 and Gd3Fe5O12 oxides. The cationic charge compensation is obtained by replacing the Fe3+ ions by divalent ions as Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ ions. The site occupied by some of these ions (Mn2+, Ni2+, Zn2+) is determined by magnetic or Mössbauer measurements.  相似文献   

10.
Effects of several electron acceptors (Fe3+, Cu2+, Cr(VI), and H2O2) on phenol degradation in anodic contact glow discharge electrolysis have been investigated. Results show that the electron acceptors have positive effects on phenol removal, with the sequence of Fe3+?>?Cr(VI)?>?H2O2?>?Cu2+. Under conditions of voltage 500?V and current 100?mA, 100?mg/L phenol can be removed with 10?min of discharge treatment in the presence of 1.0?mmol/L Fe3+, while without any additive only 35?% of phenol is removed in 30?min. The mechanism of the degradation enhancement was discussed based on the reactions taking place in the presence of the different additives.  相似文献   

11.
Novel fluorescent chemosensor with good selectivity for F? anion was designed and synthesized. The sensor has a bearing on a single functionalized pillar[5]arene and Fe3+ metal complex (PN‐Fe), which showed prominent fluorescent response for F? anion over other common anions (Cl?, Br?, I?, AcO?, HSO4?, H2PO4?, ClO4?, CN? and SCN?). These results were evaluated by fluorescent method. The detection limit of PN‐Fe to F? was calculated to be 2.50×10?7 mol/L. Moreover, the sensor PN‐Fe3+ might serve as a recyclable component in sensing materials.  相似文献   

12.
《Analytical letters》2012,45(15):2949-2958
Abstract

The effect of metal ions on TiO2 mediated photocatalytic oxidation for the determination of dissolved organic nitrogen compounds is investigated. Ethylenediaminetetraaceticacid was chosen as a model molecule for DON compounds. At pH 2, 5, 7, and 10 aqueous EDTA solutions were irradiated at 254 nm in the presence of Fe2+, Cu2+, Zn2+, Ni2+ or Co2+ ions. The sum of produced nitrate, nitrite, and ammonium ion concentrations gave the total oxidation recovery. At low pH, the photocatalytic oxidation recoveries of Fe‐EDTA, Ni‐EDTA, and Co‐EDTA were significantly lower than the photocatalytic degradation of EDTA. The presence of free Fe2+, Ni2+, and Co2+ ions decreased the photocatalytic oxidation recovery. The [NH4 +]/[NO3 ?] ratio was higher for Cu‐EDTA.  相似文献   

13.
A new crown ether carrying two anthryl groups with nitrogen–sulfur donor atom was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-chloromethyl anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligand was investigated in acetonitrile–tetrahydofuran solution (1/1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Fe2+, Fe3+, Al3+, Cu2+ and Hg2+. The results of spectrophotometric titration experiments disclosed the complexation stoichiometry and complex stability constant of the novel ligand with Fe2+, Fe3+, Al3+, Cu2+and Hg2+cations. The presence of excess amounts of Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ cations caused an enhancement of anthryl fluorescence. The ligand showed good sensitivity for Zn2+ with respect to other metal cations with linear range and detection limit of 1.4 × 10?7 to 4.1 × 10?6 M and 1.0 × 10?8 M respectively.  相似文献   

14.
Abstract

Adducts of theobromine (tbH) with 3d metal perchlorates (Mn+ = Cr3-. Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2- I here prepared by refluxing mixtures of the Iigand and a metal salt in ethyl acetate-triethyl orthoformate. The new complexes invariably involve 2: 1 molar ratios of tbH to metal ion and are apparently monomeric with terminal tbH ligands binding riaa ring nitrogen (N9 or Nl). The Mn2+, Cu2+ and Zn2- complexes are distorted tetrahedral, involving tuo tbH and two unidentate perchlorato ligands in the first coordination sphere of the metal ion. The remaining metal(II) complexes (Fe, Co, Ni) were obtained as monohydrates. These compounds are pentacoordinated of the [M(tbH)2(OClO3)2(OH2)] type, containing one aqua ligand in addition to the tbH and perchlorato ligands. The Cr3+ and Fe3+ complexes are low-symmetry hexacoordinated, with two tbH ligands. two unidentate and one bidentate chelating perchlorate Iigands.  相似文献   

15.
The kinetics of oxidation of Fe2+ by [Co(C3H2O4)3]3? in acidic solutions at 605 nm showed a simple first-order dependence in each reactant concentration. The second-order rate constant dependence on [H+] is in accordance with eqn (i) k2 = k′2 + k3[H+] (i) where k′2 and k3 have values of 73.4 ± 14.0 M ?1 s?1 and 353 ± 41 M?2 s?1, respectively, at 1.0 M ionic strength (NaClO4) and 25°C. At 310 nm the formation and decomposition of an intermediate, believed to be [FeC3H2O4]+, was observed. The increase in the rate of oxidation with increasing [H+] was interpreted in terms of a “one-ended” dissociation mechanism which facilitates chelation of Fe2+ by the carbonyl oxygens of malonate in the transition state.  相似文献   

16.
Systematic access to metal‐functionalized polyoxometalates has thus far been limited to lacunary tungsten oxide and molybdenum oxide clusters. The first controlled, stepwise bottom‐up assembly route to metal‐functionalized molecular vanadium oxides is now presented. A di‐vacant vanadate cluster with two metal binding sites, (DMA)2[V12O32Cl]3? (DMA=dimethylammonium) is formed spontaneously in solution and characterized by single‐crystal X‐ray diffraction, ESI mass spectrometry, 51V NMR spectroscopy, and elemental analyses. In the cluster, the metal binding sites are selectively blocked by hydrogen‐bonded DMA placeholder cations. Reaction of the cluster with transition metals TM (Fe3+, Co2+, Cu2+, Zn2+) gives access to mono‐functionalized vanadate clusters (DMA)[{TM(L)}V12O32Cl]n? (L=ligand). Metal binding is accomplished by significant distortions of the vanadium oxide framework reminiscent of a pincer movement. Cluster stability under technologically relevant conditions in the solid‐state and solution is demonstrated.  相似文献   

17.
The mobility and bioavailability of selenium is a major health and environmental issue and a main concern for geological disposal of high-level radioactive waste. Chemically and/or microbially mediated oxidation of insoluble Se-bearing particulate, such as iron selenides, to dissolved and mobile phases controls the transport and distribution of Se in the environment. The oxidation of ferroselite(FeSe2) by ferric iron was investigated in anoxic conditions. The redox reaction can be represented by: FeSe2 + 2Fe3+ = 2Se0 + 3Fe2+. Kinetic studies indicated that the reaction can be described by second-order rate law, with rate constants of 0.49±0.01, 0.85±0.02, 1.84±0.04, and 3.29±0.13 L mol-1 s-1 at pH 1.62, 1.87, 2.23, and 2.49, respectively. The positive correlation between reaction rate and pH implies that diffusion of Fe3+ oxidant to the mineral surface is the rate-determining step. The strong reactivity of FeSe2 towards Fe3+ suggests that ferric iron may play a significant role in FeSe2 oxidation process(e.g., by Se4+, O2, etc.) and Se0 should be the first reaction product. Also, it was shown that the reduction rate of Fe3+ or Se4+ by pyrite(FeS2) can be significantly increased in the presence of FeSe2, suggesting a stronger reactivity of FeSe2 compared with pyrite. The results obtained extend our knowledge about the subtle interaction between Se, pyrite and iron selenides in the environment, and give insight into the transfer of selenium from iron selenides to bio-available selenium(i.e., selenite and selenate) in the Se-rich environment.  相似文献   

18.
Chelation ion-exchange properties of copolymers prepared from salicylic acid, urea and formaldehyde by condensation in presence of acid catalyst were studied for Cu2+, Fe3+, UO2+, Mn2+,Zn2+ and Co2+ ions. A batch equilibration method was adopted to study the selectivity of metal ion uptake. This method involved the measurement of distribution of a given metal between the copolymer sample and a solution containing the metal ions. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for UO2 2+, Cu2+ and Fe3+ ions than Mn2+, Co2+ and Zn2+ ions.  相似文献   

19.
The complexation reactions of iron(III) with 2-pyridine carboxylic acia (picolinic acid) and 2,6-pyridine dicarboxylic acid (dipicolinic acid) in aqueous solutions have been studied by spectrophotometric and stopped flow techniques. Equilibrium constants were determined for the 1 : 1 complexes at temperatures between 25 and 80°C. The values obtained are: Picolinic Acid (HL): Fe3++ H2L+? FeHL3++H+(K1 = 2.8,ΔH = 2 kcal mole?1 at 25°C, μ = 2.67 M) Dipicolinic Acid (H2D): Fe3++H2D? FeD++2H+(K1K1A= 227 M, ΔH = 3.4 kcal mole?1 at 25°C,μ = 1.0 M). The rate constants for the formation of these complexes are also given. The results are used to evaluate the effects of these two acids upon the rate of dissolution of iron(III) from its oxides.  相似文献   

20.
L-DOPA is an important neurotransmitter that is found in the brain and as a hormone in the circulatory system. We report in this article the similarities and differences in behaviour of this important neurotransmitter as a chelating agent among some divalent and trivalent metal ions using potentiometric titration in aqueous solutions at 25.0?±?1.0°C. The careful and detailed potentiometric titrations of L-DOPA with Al3+, Cr3+, Fe3+, Cu2+, and Zn2+ are discussed and compared. UV-Vis-spectroscopy is utilized for both the free L-DOPA and for the Fe3+/L-DOPA system. The characteristic peak due to the π?→?π* transition of the free L-DOPA at ~280?nm (ε280?nm?=?1927?±?65?M?1?cm?1 between pH values of 2.0 to 3.0) disappeared when the iron solution was added to the L-DOPA sample in the same pH range. For the Fe3+/L-DOPA system we have observed a new peak at 470?nm with ε470?=?800?±?50?M?1?cm?1. These comparison studies of the similarities and differences among these di- and tri-valent metal ions shed light on these systems in aqueous solutions. The appropriate metal simulation and speciation diagrams were constructed using the model that fit the titration data points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号