首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
本文在多种复杂数据下, 研究一类半参数变系数部分线性模型的统计推断理论和方法. 首先在纵向数据和测量误差数据等复杂数据下, 研究半参数变系数部分线性模型的经验似然推断问题, 分别提出分组的和纠偏的经验似然方法. 该方法可以有效地处理纵向数据的组内相关性给构造经验似然比函数所带来的困难. 其次在测量误差数据和缺失数据等复杂数据下, 研究模型的变量选择问题, 分别提出一个“纠偏” 的和基于借补值的变量选择方法. 该变量选择方法可以同时选择参数分量及非参数分量中的重要变量, 并且变量选择与回归系数的估计同时进行. 通过选择适当的惩罚参数, 证明该变量选择方法可以相合地识别出真实模型, 并且所得的正则估计具有oracle 性质.  相似文献   

2.
该文研究了响应变量缺失下半参数部分非线性变系数EV模型的统计推断问题,利用逆概率加权局部纠偏profile最小二乘法构造了模型中非参数分量和参数分量的估计,证明了估计量的渐近正态性.通过数值模拟和实际数据分析,验证了所提出的估计方法是有效的.  相似文献   

3.
本文讨论因变量缺失下部分线性变系数模型在误差项和解释变量都含有异常点时的稳健估计问题。首先用局部加权线性光滑方法得到非参数部分的稳健估计,然后再得到参数部分的估计,并证明参数和非参数估计量的渐近正态性。最后模拟研究有限样本下估计量的表现。  相似文献   

4.
考虑响应变量随机缺失下的变系数部分线性模型的估计问题,利用构造基于借补值的辅助随机向量,给出了参数分量的借补经验对数似然比函数.证明了其渐近服从标准卡方分布,进而给出了参数分量的置信域.  相似文献   

5.
缺失数据下的半参数变系数模型的借补估计   总被引:1,自引:0,他引:1  
本文在响应变量随机缺失情形下讨论了半参数部分线性变系数模型的估计问题.首先采用局部线性方法估计系数函数,然后进一步估计常数系数.最后利用回归方法借补缺失的响应值,再用全部数据估计常数系数.本文进-步讨论了利用完整个体方法及借补方法求得的参数估计的渐近性质,并进行了模拟比较.  相似文献   

6.
在响应变量随机缺失时,研究了半参数变系数模型响应变量均值的借补估计.首先利用完整个体估计模型中的参数与非参数部分,然后再用借补方法与加权借补方法估计响应变量的均值.最后求出了估计的渐近偏差与渐近方差,研究了所得到的估计的渐近性质,并进行模拟比较.  相似文献   

7.
该文主要考虑部分线性变系数模型在自变量含有测量误差以及因变量存在缺失情形下的估计问题.基于Profile最小二乘技术,针对参数分量和非参数分量提出了多种估计方法.第一种估计方法只利用了完整观测数据,而第二种和第三种估计方法分别利用了插补技术和替代技术.参数分量的所有估计被证明是渐近正态的,非参数分量的所有估计被证明和一般非参数回归函数的估计具有相同的收敛速度.对于因变量的均值,构造了两类估计并证明了它们的渐近正态性.最后,通过数值模拟验证了所提方法.  相似文献   

8.
纵向数据是数理统计研究中的复杂数据类型之一0,在生物、医学和经济学中具有广泛的应用.在实际中经常需要对纵向数据进行统计分析和建模.文章讨论了纵向数据下的半参数变系数部分线性回归模型,这里的纵向数据的在纵向观察在时间上可以是不均等的,也可看成是按某一随机过程来发生.所研究的半参数变系数模型包括了许多半参数模型,比如部分线性模型和变系数模型等.利用计数过程理论和局部线性回归方法,对于纵向数据下半参数变系数进行了统计推断,给出了参数分量和非参数分量的profile最小二乘估计,研究了这些估计的渐近性质,获得这些估计的相合性和渐近正态性.  相似文献   

9.
在响应变量随机缺失时,利用拟似然方法给出了广义变系数模型中非参数函数系数的估计.研究了所得到的估计的渐近性质,求出了估计的渐近偏差与渐近方差,并进行模拟比较.  相似文献   

10.
研究非参数部分带有测量误差的部分线性变系数模型,构造了模型中未知参数的局部纠偏经验对数似然比统计量,在适当条件下,证明了所提出的统计量具有渐近x2分布,由此结果可以用来构造未知参数的置信域.并且还构造了未知参数的最大经验似然估计及系数函数的估计,证明了它们的渐近性质.最后通过数值模拟研究了所提估计方法在有限样本下的实际...  相似文献   

11.
主要研究因变量存在缺失且协变量部分包含测量误差情形下,如何对变系数部分线性模型同时进行参数估计和变量选择.我们利用插补方法来处理缺失数据,并结合修正的profile最小二乘估计和SCAD惩罚对参数进行估计和变量选择.并且证明所得的估计具有渐近正态性和Oracle性质.通过数值模拟进一步研究所得估计的有限样本性质.  相似文献   

12.
范承华  薛留根 《应用数学》2008,21(1):105-113
针对响应变量缺失下的半参数回归模型,构造模型中未知参数的经验对数似然比统计量,证明了所提出的统计量具有渐近χ2分布,由此构造未知参数的置信域,并就置信域的覆盖概率及区间长度方面,通过模拟研究与最小二乘法进行优劣比较.  相似文献   

13.
当响应变量缺失、协变量具有测量误差,且模型参数部分有附加的线性约束时,主要研究一类变系数部分线性模型的统计推断问题.利用借补技术来补全缺失数据,并借助修正的profile最小二乘估计得到了模型参数分量和非参数分量的借补约束估计,并证明了参数分量的估计满足渐近正态性,同时非参数分量的估计与通常的非参数回归函数的估计具有相同的收敛速度.其次利用profile拉格朗日乘子检验对模型参数的约束条件进行检验,并证明了给出的检验统计量在原假设成立时渐近地服从标准卡方分布.数值模拟进一步表明对缺失数据进行借补可以有效地提高参数估计和假设检验的效率.  相似文献   

14.
通过比较参数方法和非参数方法对选择概率建模的优缺点,基于充分降维的思想提出了一种利用单指标模型对选择概率建模的半参数方法.基于逆概率加权方法和半参数方法,研究了缺失数据下线性模型的统计推断问题.建立的逆概率加权估计方程可以处理不同的数据缺失情形,给出了线性模型中兴趣参数的估计,并证明了它的渐近正态性.最后通过模拟研究说明提出的方法具有较好的有限样本性质.  相似文献   

15.
In this paper, we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data. By constructing a penalized auxiliary vector ingeniously, we propose an empirical likelihood based variable selection procedure, and show that it is consistent and satisfies the sparsity. The simulation studies show that the proposed variable selection method is workable.  相似文献   

16.
In this paper,the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors.Firstly, a bandwidth selection procedure is proposed,which is a combination of the differencebased technique and GCV method.Secondly,a goodness-of-fit test procedure is proposed, which is an extension of the generalized likelihood technique.Thirdly,a variable selection procedure for the parametric part is provided based on the nonconcave penalization and corrected profile least squares.Same as"Variable selection via nonconcave penalized likelihood and its oracle properties"(J.Amer.Statist.Assoc.,96,2001,1348-1360),it is shown that the resulting estimator has an oracle property with a proper choice of regularization parameters and penalty function.Simulation studies are conducted to illustrate the finite sample performances of the proposed procedures.  相似文献   

17.
魏传华  吴喜之 《应用数学》2008,21(2):378-383
作为部分线性模型与变系数模型的推广,部分线性变系数模型是一类在建模中应用非常广泛的模型.本文基于Profile最小二乘方法给出了模型中误差方差的估计并证明了该估计的渐近正态性.最后通过数值模拟验证了我们所提估计方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号