首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, sensitive and specific method to quantify nevirapine in human plasma using dibenzepine as the internal standard (IS) was developed and validated. The method employed a liquid-liquid extraction. The analyte and the IS were chromatographed on a C(18) analytical column, (150 x 4.6 mm i.d. 4 microm) and analyzed by tandem mass spectrometry in the multiple reaction monitoring mode. The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 10-5000 ng ml(-1) (r(2) > 0.9970). The between-run precision, based on the relative standard deviation for replicate quality controls was 1.3% (30 ng ml(-1)), 2.8% (300 ng ml(-1)) and 3.6% (3000 ng ml(-1)). The between-run accuracy was 4.0, 7.0 and 6.2% for the above-mentioned concentrations, respectively. This method was employed in a bioequivalence study of two nevirapine tablet formulations (Nevirapina from Far-Manguinhos, Brazil, as a test formulation, and Viramune from Boehringer Ingelheim do Brasil Química e Farmacêutica, as a reference formulation) in 25 healthy volunteers of both sexes who received a single 200 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. The 90% confidence interval (CI) of the individual ratio geometric mean for Nevirapina/Viramune was 96.4-104.5% for AUC((0-last)), 91.4-105.1% for AUC((0-infinity)) and 95.3-111.6% for C(max) (AUC = area under the curve; C(max) = peak plasma concentration). Since both 90% CI for AUC((0-last)) and AUC((0-infinity)) and C(max) were included in the 80-125% interval proposed by the US Food and Drug Administration, Nevirapina was considered bioequivalent to Viramune according to both the rate and extent of absorption.  相似文献   

2.
A method based on liquid chromatography with negative ion electrospray ionization and tandem mass spectrometry is described for the determination of nimesulide in human plasma. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was employed and celecoxib was used as an internal standard. The chromatographic run time was 4.5 min and the weighted (1/x) calibration curve was linear in the range 10.0-2000 ng x ml(-1). The limit of quantification was 10 ng x ml(-1), the intra-batch precision was 6.3, 2.1 and 2.1% and the intra-batch accuracy was 3.2, 0.3 and 0.1% for 30, 300 and 1200 ng x ml(-1) respectively. The inter-batch precision was 2.3, 2.8 and 2.7% and the accuracy was 3.3, 0.3 and 0.1% for 30, 300 and 1200 ng x ml(-1) respectively. This method was employed in a bioequivalence study of one nimesulide drop formulation (nimesulide 50 mg x ml(-1) drop, Medley S/A Indústria Farmacêutica, Brazil) against one standard nimesulide drop formulation (Nisulid, 50 mg x ml(-1) drop, Astra Médica, Brazil). Twenty-four healthy volunteers (both sexes) took part in the study and received a single oral dose of nimesulide (100 mg, equivalent to 2 ml of either formulation) in an open, randomized, two-period crossover way, with a 2-week washout interval between periods. The 90% confidence interval (CI) for geometric mean ratios between nimesulide and Nisulid were 93.1-109.6% for C(max), 87.7-99.8% for AUC(last) and 88.1-99.7% for AUC(0-infinity). Since the 90% CI for the above-mentioned parameters were included in the 80-125% interval proposed by the US Food and Drug Administration, the two formulations were considered bioequivalent in terms of both rate and extent of absorption.  相似文献   

3.
A rapid, sensitive and specific method to quantify cyproheptadine in human plasma using amitriptyline as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid‐liquid extraction using a diethyl‐ether/dichloromethane (70/30; v/v) solvent. After removing and drying the organic phase, the extracts were reconstituted with a fixed volume of acetonitrile/water (50/50 v/v) + 0.1% of acetic acid. The extracts were analyzed by high performance liquid chromatography coupled to electrospray tandem mass spectrometry (LC‐MS/MS). Chromatography was performed isocratically using an Alltech Prevail C18 5 µm analytical column, (150 mm x 4.6 mm I.D.). The method had a chromatographic run time of 4 min and a linear calibration curve ranging from 0.05 to 10 ng/mL (r2 > 0.99). The limit of quantification was 0.05 ng/mL. This HPLC/MS/MS procedure was used to assess the bioequivalence of cyproheptadine in two cyproheptadine + cobamamide (4 mg + 1 mg) tablet formulations (Cobactin® [cyproheptadine + cobamamide] test formulation supplied from Zambon Laboratórios Farmacêuticos Ltda. and Cobavital® from Solvay Farma (standard reference formulation)). A single 4 mg + 1 mg [cyproheptadine + cobamamide] dose of each formulation was administered to healthy volunteers. The study was conducted using an open, randomized, two‐period crossover design with a 1‐week washout interval. Since the 90% CI for Cmax and AUCs ratios were all within the 80‐125% bioequivalence limit proposed by the US Food and Drug Administration, it was concluded that the cyproheptadine test formulation (Cobactin®) is bioequivalent to the Cobavital® formulation for both the rate and the extent of absorption of cyproheptadine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid, sensitive and specific method to quantify ticlopidine in human plasma using clopidogrel as the internal standard (IS) is described. The analyte and the IS were extracted from acidified plasma by liquid-liquid extraction using diethyl ether-hexane (80 : 20, v/v). The extracts were analyzed by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry (HPLC/MS/MS). Chromatography was performed isocratically on a Jones Genesis C(8) 4 microm analytical column (150 x 4.1 mm i.d.). The method had a chromatographic run time of 3.0 min and a linear calibration curve over the range 1.0-1000 ng ml(-1) (r(2) > 0.999427). The limit of quantification was 1.0 ng ml(-1). This HPLC/MS/MS procedure was used to assess the bioequivalence of two ticlopidine 250 mg tablet formulations (ticlopidine test formulation from Apotex do Brasil, Brazil, and Ticlid from Sanofi-Synthelabo, standard reference formulation). A single 250 mg dose of each formulation was administered to healthy volunteers. The study was conducted using an open, randomized, two-period crossover design with a 2 week washout interval. Since the 90% confidence interval for C(max) and area under the curve ratios were all inside the 80-125% interval proposed by the US Food and Drug Administration, it was concluded that ticlopidine formulation from Apotex do Brasil is bioequivalent to Ticlid formulation with respect to both the rate and the extent of absorption.  相似文献   

5.
A simple method using a one-step liquid-liquid extraction (LLE) followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of bromazepam in human plasma, using lorazepam as internal standard. The acquisition was performed in the multiple reaction monitoring mode, monitoring the transitions: m/z 316 > 182 for bromazepam and m/z 321 > 275 for lorazepam. The method was linear over the studied range (1-100 ng ml(-1)), with r(2) > 0.98, and the run time was 2.5 min. The intra- and inter-assay precisions were 2.7-14.6 and 4.1-17.3%, respectively and the intra- and inter-assay accuracies were 87-111 and 75.8-109.5%, respectively. The mean recovery was 73.7%, ranging from 64.5 to 79.7%. The limit of quantification was 1 ng ml(-1). At this concentration the mean intra- and inter-assay precisions were 14.6 and 7.1%, respectively, and the mean intra- and inter-assay accuracies were 102.5 and 104%, respectively. Bromazepam stability was evaluated and the results showed that the drug is stable in standard solution and in plasma samples under typical storage and processing conditions. The method was applied to a bioequivalence study in which 27 healthy adult volunteers (14 men) received single oral doses (6 mg) of reference and test bromazepam formulations, in an open, two-period, randomized, crossover protocol. The 90% confidence interval of the individual ratios (test formulation/reference formulation) for C(max) (peak plasma concentration), AUC(0-96) and AUC(0-inf) (area under the plasma concentration versus time curve from time zero to 96 h and to infinity, respectively) were within the range 80-125%, which supports the conclusion that the test formulation is bioequivalent to the reference formulation regarding the rate and extent of bromazepam absorption.  相似文献   

6.
A rapid, sensitive and specific method for quantifying clonazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using a hexane/diethylether (20 : 80, v/v) solution. The extracts were analysed by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed on a Jones Genesis C8 4 microm analytical column (100 x 2.1 mm i.d.). The method had a chromatographic run time of 3.0 min and a linear calibration curve over the range 0.5-50 ng/ml (r2 > 0.9965). The limit of quantification was 0.5 ng/ml. This HPLC/MS/MS procedure was used to assess the bioequivalence of two clonazepam 2 mg tablet formulations (clonazepam test formulation from Ranbaxy Laboratories Ltd and Rivotril from Roche Laboratórios Ltda as standard reference formulation).  相似文献   

7.
A rapid, sensitive and specific LC‐MS/MS method was developed and validated for quantifying chlordesmethyldiazepam (CDDZ or delorazepam), the active metabolite of cloxazolam, in human plasma. In the analytical assay, bromazepam (internal standard) and CDDZ were extracted using a liquid‐liquid extraction (diethyl‐ether/hexane, 80/20, v/v) procedure. The LC‐MS/MS method on a RP‐C18 column had an overall run time of 5.0 min and was linear (1/x weighted) over the range 0.5–50 ng/mL (R > 0.999). The between‐run precision was 8.0% (1.5 ng/mL), 7.6% (9 ng/mL), 7.4% (40 ng/mL), and 10.9% at the low limit of quantification—LLOQ (0.500 ng/mL). The between‐run accuracies were 0.1, –1.5, –2.7 and 8.7% for the above mentioned concentrations, respectively. All current bioanalytical method validation requirements (FDA and ANVISA) were achieved and it was applied to the bioequivalence study (Cloxazolam—test, Eurofarma Lab. Ltda and Olcadil®— reference, Novartis Biociências S/A). The relative bioavailability between both formulations was assessed by calculating individual test/reference ratios for Cmax, AUClast and AUC0‐inf. The pharmacokinetic profiles indicated bioequivalence since all ratios were as proposed by FDA and ANVISA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A new method was developed and fully validated for the quantitation of benazepril, benazeprilat and hydrochlorothiazide in human plasma. Sample pretreatment was achieved by solid-phase extraction (SPE) using Oasis HLB cartridges. The extracts were analysed by high-performance liquid chromatography (HPLC) coupled to a single-quadrupole mass spectrometer (MS) with an electrospray ionization interface. The MS system was operated in selected ion monitoring (SIM) modes. HPLC was performed isocratically on a reversed-phase porous graphitized carbon (PGC) analytical column (2.1 x 125.0 mm i.d., particle size 5 microm). The mobile phase consisted of 55% acetonitrile in water containing 0.3% v/v formic acid and pumped at a flow rate of 0.15 ml min(-1). Chlorthalidone was used as the internal standard (IS) for quantitation. The assay was linear over a concentration range of 5.0-500 ng ml(-1) for all the compounds analysed, with a limit of quantitation of 5 ng ml(-1) for all the compounds. Quality control (QC) samples (5, 10, 100 and 500 ng ml(-1)) in five replicates from three different runs of analyses demonstrated intra-assay precision (coefficient of variation (CV) < or =14.6%), inter-assay precision (CV < or = 5.6%) and overall accuracy (relative error less than -8.0%). The method can be used to quantify benazepril, benazeprilat and hydrochlorothiazide in human plasma, covering a variety of pharmacokinetic or bioequivalence studies.  相似文献   

9.
In the present study a fast, sensitive and robust validated method to quantify chlorpheniramine in human plasma using brompheniramine as internal standard (IS) is described. The analyte and the IS were extracted from plasma by LLE (diethyl ether–dichloromethane, 80:20, v/v) and analyzed by HPLC‐ESI‐MS/MS. Chromatographic separation was performed using a gradient of methanol from 35 to 90% with 2.5 mm NH4OH on a Gemini Phenomenex C8 5 μm column (50 × 4.6 mm i.d.) in 5.0 min/run. The method fitted to a linear calibration curve (0.05–10 ng/mL, R > 0.9991). The precision (%CV) and accuracy ranged, respectively: intra‐batch from 1.5 to 6.8% and 99.1 to 106.6%, and inter‐batch from 2.4 to 9.0%, and 99.9 to 103.1%. The validated bioanalytical procedure was used to assess the comparative bioavailability in healthy volunteers of two dexchlorpheniramine 2.0 mg tablet formulations (test dexchlorpheniramine, Eurofarma, and reference Celestamine®, Schering‐Plough). The study was conducted using an open, randomized, two‐period crossover design with a 2 week washout interval. Since the 90% confidence interval for Cmax and AUC ratios were all within the 80–125% interval proposed by ANVISA and FDA, it was concluded that test and reference formulations are bioequivalent concerning the rate and the extent of absorption. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
p‐Cresol sulfate (pCS) and indoxyl sulfate (IS) are protein‐bound uremic toxins that accumulate in patients with chronic kidney disease (CKD). They are closely associated with the mortality rate of CKD and morbidity of cardiovascular disease. In the present study, we established a rapid method for determination of pCS and IS by HPLC‐MS/MS in serum samples from 205 CKD patients undergoing peritoneal dialysis. In brief, serum was extracted by acetonitrile and spiked with hydrochlorothiazide. The prepared sample was eluted through HPLC column (Agilent Zorbax SB‐C18, 3.5 μm, 2.1 × 100 mm) with a mobile phase of acetonitrile and 10 mm ammonium acetate solution (10:90, v/v) for subsequent detection of pCS and IS by MS/MS. The linearity ranged from 50 to 10,000 ng/mL for pCS (r > 0.99), and from 500 to 10,000 ng/mL for IS (r > 0.99). The lower limit of quantification was 50 ng/mL for pCS, and 500 ng/mL for IS. Relative standard deviation (RSD) of intra‐ and inter‐day precision was within ±15%. The results showed that pCS and IS levels were partially correlated with renal function in CKD patients, and IS was directly related to serum creatinine and estimated glomerular filtration rate.  相似文献   

11.
A sensitive and fast HPLC/MS/MS method for measurement of sufentanil and morphine in plasma was developed and validated. A single liquid-liquid extraction in alkaline medium was used for the cleanup of plasma, and fentanyl was added as an internal standard (IS). The analyses were carried out using a C18 column and the mobile phase acetonitrile-5 mM ammonium acetate + 0.25% formic acid (70 + 30, v/v). The triple-quadrupole mass spectrometer equipped with an electrospray source in positive mode was set up in the selective reaction monitoring mode to detect precursor --> product ion transition 387.0 > 238.0, 285.7 > 165.1, and 337.0 > 188.0 for sufentanil, morphine, and IS, respectively. The method was linear in the 0.05 (LOQ) - 500 ng/mL range for sufentanil and 10 (LOQ) - 1000 ng/mL range for morphine. Good selectivity, linearity, precision, accuracy, and robustness were obtained for the HPLC/MS/MS method. The proposed method was successfully applied for the determination of sufentanil and morphine in patients undergoing cardiac surgery.  相似文献   

12.
A high‐throughput, simple, highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of simvastatin acid (SA), amlodipine (AD) and valsartan (VS) with 500 µL of human plasma using deuterated simvastatin acid as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode (MRM) using electrospray ionization. The assay procedure involved precipitation of SA, AD, VS and IS from plasma with acetonitrile. The total run time was 2.8 min and the elution of SA, AD, VS and IS occurred at 1.81, 1.12, 1.14 and 1.81 min, respectively; this was achieved with a mobile phase consisting of 0.02 m ammonium formate (pH 4.5):acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X‐Terra C18 column. A linear response function was established for the range of concentrations 0.5–50 ng/mL (> 0.994) for VS and 0.2–50 ng/mL (> 0.996) for SA and AD. The method validation parameters for all three analytes met the acceptance as per FDA guidelines. This novel method has been applied to human pharmacokinetic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A rapid, sensitive, and simple HPLC/MS/MS method was developed and validated for the determination of (5Z,E)-3-[2-(4-chlorophenyl)-2-oxoethyl]-5-(1H-indol-3-ylmethylene)-thiazolidine-2, 4-dione (PG15) in rat plasma using chlortalidone as an internal standard (IS). Analyses were performed using a C18 column and isocratic elution with acetonitrile-water (90 + 10, v/v) containing 10 mM ammonium hydroxide (pH 8.0) as the mobile phase pumped at 0.3 mL/min. Detection was performed by MS with negative ion mode electrospray ionization. Rat plasma samples were prepared by deproteinizing with acetonitrile. Detected fragments were 395.1 > 171.9 for PG15 and 337.3 > 189.9 for the IS. Calibration curves were linear from 10 to 1000 ng/mL, with the determination coefficient > 0.99. The intraday and interday precisions were less than 12.2 and 11.3%, respectively. The applicability of the HPLC/MS/MS method for pharmacokinetic studies was tested using plasma samples obtained after oral administration of PG15 to rats, and it provided the necessary sensitivity, linearity, precision, accuracy, and specificity.  相似文献   

14.
In the present study a simple, fast, sensitive and robust method to quantify mirtazapine in human plasma using quetiapine as the internal standard (IS) is described. The analyte and the IS were extracted from human plasma by a simple protein precipitation with methanol and were analyzed by high‐performance liquid chromatography coupled to an electrospray tandem triple quadrupole mass spectrometer (HPLC‐ESI‐MS/MS). Chromatography was performed isocratically on a C18, 5 µm analytical column and the run time was 1.8 min. The lower limit of quantitation was 0.5 ng/mL and a linear calibration curve over the range 0.5–150 ng/mL was obtained, showing acceptable accuracy and precision. This analytical method was applied in a relative bioavailability study in order to compare a test mirtazapine 30 mg single‐dose formulation vs a reference formulation in 31 volunteers of both sexes. The study was conducted in an open randomized two‐period crossover design and with a 14 day washout period. Since the 90% confidence interval for Cmax, AUClast and AUC0–inf were within the 80–125% interval proposed by the Food and Drug Administration and ANVISA (Brazilian Health Surveillance Agency), it was concluded that mirtazapine 30 mg/dose is bioequivalent to the reference formulation, according to both the rate and extent of absorption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid, sensitive and specific analytical method was developed and validated to quantify gabapentin in human plasma using acetaminophen as an internal standard. The method employs a single plasma protein precipitation. The analytes are chromatographed on a C4 reversed-phase chromatographic column and analyzed by mass spectrometry in the multiple reaction monitoring (MRM) mode. The method has a chromatographic run time of 4 min and a linear calibration curve over the range 50-10 000 ng x ml(-1) (r > 0.999). The between-run precision, based on the relative standard deviation for replicate quality controls, was < or = 4.8 % (200 ng x ml(-1)), 6.0% (1000 ng x ml(-1)) and 4.4% (5000 ng x ml(-1)). The between-run accuracy was +/-2.6, 4.4 and 0.5% for the above-mentioned concentrations, respectively. This method was employed in a bioequivalence study of two gabentin capsule formulations (Progresse from Biosintética, Brazil, as a test formulation, and Neurotin from Parke-Davis, as a reference formulation) in 24 healthy volunteers of both sexes who received a single 300 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 7-day washout interval. The 90% confidence interval (CI) of the individual ratio geometric mean for Progresse/Neurotin was 87.9-115.6% for AUC(0-36 h) and 88.6-111.7% for Cmax. Since both 90% CI for AUC(0-36 h) and Cmax were included in the 80-125% interval proposed by the US Food and Drug Administration, Progresse was considered bioequivalent to Neurotin according to both the rate and extent of absorption.  相似文献   

16.
A rapid and simple high performance liquid chromatographic method coupled with tandem mass spectrometry (LC–MS–MS) via electrospray ionization (ESI) has been developed and validated to separate and simultaneously quantify sodium ferulate (SF), salicylic acid (SA), cinnarizine (CIN) and vitamin B1 (VB1) in human plasma. Gemfibrozil (GEM) was used as the internal standard (IS) for SF and SA, whereas lomerizine (LOM) was used as the IS for CIN and VB1. The plasma samples were prepared by one-step protein precipitation followed by an isocratic elution with 10 mM ammonium acetate buffer (pH = 5.0): acetonitrile (35:65, v/v,) on an Agilent Zorbax SB-CN column (150 mm × 2.0 mm ID, 5 μm). The precursor and product ions of these drugs were monitored on a triple quadrupole mass spectrometer, operating in the selected reaction monitoring mode (SRM) with polarity switch, in the negative-ion mode for SF, SA and GEM, in the positive-ion mode for CIN, VB1 and LOM. The method was validated over the concentration range of 1.5–1,000 ng mL−1 for SF, 20–5,000 ng mL−1 for SA, 2–500 ng mL−1 for CIN, 1–30 ng mL−1 for VB1. The intra- and inter-batch precisions were less than 15% of the relative standard deviation. The recoveries for analytes and IS achieved from spiked plasma samples were consistent and reproducible. The validated LC–MS–MS method has been successfully applied to the pharmacokinetic study of sodium ferulate and aspirin capsule in healthy volunteers.  相似文献   

17.
A sensitive and selective LC‐MS/MS method was developed and validated for the determination and pharmacokinetic investigation of segetalin A in rat plasma. Sample preparation was accomplished through a simple SPE procedure for the removal and preconcentration of the analyte and IS. Plasma samples were separated by HPLC on a Symmetry C18 column using a mobile phase consisting of methanol and 0.1% formic acid in water (70:30, v/v) with isocratic elution. The quantification was performed using multiple reaction monitoring with the transitions m/z 610.3 → 511.2 for segetalin A and m/z 779.4 → 751.4 for IS, respectively. The calibration curve was linear over the range of 8.0–4000 ng/mL with a limit of quantitation (LOQ) of 8.0 ng/mL. This method was applied in a pharmacokinetic study of segetalin A in rats. For intravenous (i.v.) administration, the plasma concentrations of segetalin A decreased quickly (t1/2z, 1.31 ± 0.341 h). For oral administration, the plasma concentrations of segetalin A increased to a peak value at 1.50 ± 0.577 h, followed by a gradual decrease to the LOQ in 12 h. The mean AUC values after i.v. and oral administration were 553 ± 105 and 1482 ± 110 ng h/mL, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A method based on solid-phase extraction (SPE) coupled to high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed for the determination of stavudine in human serum, using didanosine as internal standard. The acquisition was performed in multiple reaction monitoring (MRM) mode. The method was linear over the studied range (10-2000 ng/mL), with r(2) > 0.99, and the run time was 4 min. The intra- and inter-assay precisions (%) were in the ranges 0.1-13.6 and 2.6-9.9, respectively, and the intra- and inter-assay accuracies were >92%. The absolute recoveries were approximately 100% (10 ng/mL), 98% (30 ng/mL), 105% (750 ng/mL) and 105% (1500 ng/mL). The limits of detection and quantitation were 4 and 10 ng/mL, respectively. The analytical method was applied to a bioequivalence study, in which 24 healthy adult volunteers (12 men) received single oral doses (40 mg) of reference and two test stavudine formulations, in an open, three-period, randomized, crossover protocol. The 90% confidence interval of the individual ratios (test formulation/reference formulation) for C(max) (peak serum concentration), AUC(0-10) and AUC(0-inf) (areas under the serum concentration vs. time curve from time zero to 10 h and to infinity, respectively), were in the range 80-125%, which supports the conclusion that the two test formulations are bioequivalent to the reference formulation with respect to the rate and extent of stavudine absorption.  相似文献   

19.
A simple and sensitive analytical method using liquid chromatography–tandem mass spectrometry (LC/MS/MS) for determination of acetylsalicylic acid (aspirin, ASA) and its major metabolite, salicylic acid (SA), in animal plasma has been developed and validated. Both ASA and SA in plasma samples containing potassium fluoride were extracted using acetonitrile (protein precipitation) with 0.1% formic acid in it. 6‐Methoxysalicylic acid was used as the internal standard (IS). The compounds were separated on a reversed‐phase column. The multiple reaction monitoring mode was used with ion transitions of m/z 178.9 → 136.8, 137.0 → 93.0 and 167.0 → 123.0 for ASA, SA and IS, respectively. The lower limits of quantification for ASA and SA were 3 and 30 ng/mL, respectively. The developed method was successfully applied for the evaluation of pharmacokinetics of ASA and SA after p.o. and i.v. administration of 1 mg/kg to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Larotrectinib is a first-generation tropomyosin kinase inhibitor, approved for the treatment of solid tumors. In this paper, we present a validated dried blood spot (DBS) method for the quantitation of larotrectinib from mouse blood using HPLC–MS/MS, which was operated under multiple reaction monitoring mode. To the DBS disc cards, acidified methanol enriched with internal standard (IS; enasidenib) was added and extracted using tert-butyl methyl ether as an extraction solvent with sonication. Chromatographic separation of larotrectinib and the IS was achieved on an Atlantis dC18 column using 10 mm ammonium formate–acetonitrile (30:70, v/v) delivered at a flow-rate of 0.80 ml/min. Under these optimized conditions, the retention times of larotrectinib and the IS were ~0.93 and 1.37 min, respectively. The total run time was 2.50 min. Larotrectinib and the IS were analyzed using positive ion scan mode and parent–daughter mass to charge ion (m/z) transitions of 429.1 → 342.1 and 474.1 → 267.1, respectively, were used for the quantitation. The calibration range was 1.06–5,080 ng/ml. No matrix effect or carryover was observed. Hematocrit did not influence DBS larotrectinib concentrations. All of the validation parameters met the acceptance criteria. The applicability of the validated method was shown in a mouse pharmacokinetic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号