首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to accurately determine the elastic modulus of each layer of the human cornea is a crucial step in the design of better corneal prosthetics. In addition, knowledge of the elastic modulus will allow design of substrates with relevant mechanical properties for in vitro investigations of cellular behavior. Previously, we have reported elastic modulus values for the anterior basement membrane and Descemet's membrane of the human cornea, the surfaces in contact with the epithelial and endothelial cells, respectively. We have completed the compliance profile of the stromal elements of the human cornea by obtaining elastic modulus values for Bowman's layer and the anterior stroma. Atomic force microscopy (AFM) was used to determine the elastic modulus, which is a measure of the tissue stiffness and is inversely proportional to the compliance. The elastic response of the tissue allows analysis with the Hertz equation, a model that provides a relationship between the indentation force and depth and is a function of the tip radius and the modulus of the substrate. The elastic modulus values for each layer of the cornea are: 7.5±4.2 kPa (anterior basement membrane), 109.8±13.2 kPa (Bowman's layer), 33.1±6.1 kPa (anterior stroma), and 50±17.8 kPa (Descemet's membrane). These results indicate that the biophysical properties, including elastic modulus, of each layer of the human cornea are unique and may play a role in the maintenance of homeostasis as well as in the response to therapeutic agents and disease states. The data will also inform the design and fabrication of improved corneal prosthetics.  相似文献   

2.
Individual 4 x 6-meric tarantula hemocyanins and dissociation products were imaged by AFM in the non-contact mode. Although the resolution was low, the hexamers and topological arrangement within the oligomers can be seen. However, the relative humidity seems to affect the height profiles.  相似文献   

3.
When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids.The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 μm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements.  相似文献   

4.
《Surface science》1994,311(3):L731-L736
Single-shell carbon nanotubes, approximately 1 nm in diameter, have been imaged for the first time by atomic force microscopy operating in both the contact and tapping modes. For the contact mode, the height of the imaged nanotubes has been calibrated using the atomic steps of the silicon substrate on which the nanotubes were deposited. For the tapping mode, the calibration was performed using an industry-standard grating. The paper discusses substrate and sample preparation methods for the characterization by scanning probe microscopy of nanotubes deposited on a substrate.  相似文献   

5.
Chaos in atomic force microscopy   总被引:1,自引:0,他引:1  
Chaotic oscillations of microcantilever tips in dynamic atomic force microscopy (AFM) are reported and characterized. Systematic experiments performed using a variety of microcantilevers under a wide range of operating conditions indicate that softer AFM microcantilevers bifurcate from periodic to chaotic oscillations near the transition from the noncontact to the tapping regimes. Careful Lyapunov exponent and noise titration calculations of the tip oscillation data confirm their chaotic nature. AFM images taken by scanning the chaotically oscillating tips over the sample show small, but significant metrology errors at the nanoscale due to this "deterministic" uncertainty.  相似文献   

6.
Water-solid interfaces play important roles across a broad range of scientific and application fields. In the past decades, atomic force microscopy (AFM) has significantly deepened our understanding of water-solid interfaces at molecular scale. In this review, we describe the recent progresses on probing water-solid interfaces by noncontact AFM, highlighting the imaging of interfacial water with ultrahigh spatial resolution. In particular, the recent development of qPlus-based AFM with functionalized tips has made it possible to directly image the H-bonding skeleton of interfacial water under UHV environment. Based on high-order electrostatic forces, such a technique even enables submolecular-level imaging of weakly bonded water structures with negligible disturbance. In addition, the three-dimensional (3D) AFM using low-noise cantilever deflection sensors can achieve atomic resolution imaging at liquid/solid interfaces, which opens up the possibility of probing the hydration layer structures under realistic conditions. We then discuss the application of those AFM techniques to various interfacial water systems, including water clusters, ion hydrates, water chains, water monolayers/multilayers and bulk water/ice on different surfaces under UHV or ambient environments. Some important issues will be addressed, including the H-bonding topology, ice nucleation and growth, ion hydration and transport, dielectric properties of water, etc. In the end, we present an outlook on the directions of future AFM studies of water at interfaces and the challenges faced by this field, as well as the development of new AFM techniques.  相似文献   

7.
Atomic force microscopy is modeled in the time-frequency phase space. In this phase space it is equivalent to a succession of temporal lenses and free spaces which includes a temporal fractional Fourier device. Then, the Wigner transform and its second order moments are introduced to model the atomic force microscopy as a detector of ultrafast electrical signals.  相似文献   

8.
The use of Atomic Force Microscope (AFM, from Corporate Head, Santa Clara, California, USA) opened a new way to study latent nuclear tracks. In our experiments we used plastic track detectors of the type CR-39 (Columbia Resin No. 39) Impinging ions with energy above a threshold of 180 keV can alter the molecular structure forming latent tracks. Since nuclear latent tracks have diameters in the range of 10 to 1000 nm, they can be visualized by AFM with a slight chemical etching (6 min in 6 n NaOH solution at 70 °C). These tracks are significant for the energy, momentum and the mass of the incoming particles. In our study, passive CR-39 detectors were irradiated by secondary particles produced bombarding 103Rh by 16O and 12C in a wide range of energy (1 MeV/amu to 33 MeV/amu) at the MP Tandem generator of the Laboratorio Nazionale del Sud in Catania, Italy. The experiment was carried out in order to identify the secondary particles and to determine their density and the spatial distribution.  相似文献   

9.
A novel method using atomic force microscopy (AFM) to study optical fibre structures at the fibre end-face has been successfully developed. The doping concentration profiles of fibres revealed by differential etching speeds in a saturated solution of ammonium bifluoride at room temperature (25°C) were obtained from AFM topographic images. The superior spatial resolution of AFM made it possible to resolve concentric structures a hundred times smaller than the feature, due to the difference in the known refractive index (n) of 1×10-3. Fibres with small core diameters and anisotropic structures, such as polarization-maintaining fibres, were studied with ease.  相似文献   

10.
A new method has been developed to measure thermal transitions by atomic force microscopy in the non-contact mode, using it as a dynamic mechanical analyser on a local scale. In this method the cantilever is oscillating above the polymer surface and the resonance frequency is measured as a function of the temperature. Thermal transitions of a polymer are clearly visible as a change in the characteristic-frequency behaviour of the cantilever. This paper introduces a simple model to explain the response of the cantilever caused by the transitions in the polymer and the related form of the frequency/temperature curves. This new technique adds a new dimension to the standard thermal analysis techniques, with which the thermal transitions of different polymer phases can be resolved individually for polymer blends or copolymers, for example in structured multiphase polymers. Received: 1 November 2001 / Accepted: 7 November 2001 / Published online: 23 January 2002  相似文献   

11.
Freshly cleaved mica and a mica surface treated with pure water and dilute-salt solution have been investigated by Atomic Force Microscopy (AFM). On the bare mica surface (after repeated scanning), small dots and islands were observed. The disappearance of these dots and islands has also been captured by AFM. We believe these structures to be condensed water. The water meniscus between AFM tip and mica surface is considered as the source of this water structure. On the mica surface treated with pure water and dilute-salt solution, network structures are frequently observed by AFM.  相似文献   

12.
Theory of multifrequency atomic force microscopy   总被引:1,自引:0,他引:1  
We develop a theory that explains the origin of the high force sensitivity observed in multifrequency force microscopy experiments. The ability of the microscope to extract complementary information on the surface properties is increased by the simultaneous excitation of several flexural cantilever modes. The force sensitivity in multifrequency operation is about 0.2 pN. The analytical model identifies the virial and the energy dissipated by the tip-surface forces as the parameters responsible for the material contrast. The agreement obtained among the theory, experiments and numerical simulations validates the model.  相似文献   

13.
程志海  郑志月  裘晓辉 《物理》2016,45(3):180-187
原子力显微术是微纳米尺度实空间形貌成像与结构表征的关键技术之一。近些年,原子力显微术衍生发展出了一系列令人瞩目的功能化探测模式和新技术。文章从以下两个方面论述了原子力显微术的前沿进展:(1)原子力显微术的功能化探测模式及其在微纳米尺度物性研究与测量以及微纳加工等领域的应用;(2)原子力显微术自身在更高精度、更高分辨率、更快速度、更多功能等方面的进展及在基础和应用研究领域中的应用。文章还展望了原子力显微术的下一步发展方向和正在不断扩展的研究领域。  相似文献   

14.
The mechanism of the formation of phase contrast in atomic force microscopy (AFM) is studied for various conditions of an oscillating tip interacting with the surface. A phase shift is detected in oscillations of the resonating AFM tip during its interaction with the substrate surface when the AFM tip moves over the surface. We substantiate kinetic mechanism of the formation of phase contrast in AFM, which is initiated when the velocity of the AFM tip moving over the substrate surface increases as a result of increasing friction force. A dependence of the kinetic contrast in AFM on the effective roughness of the surface is discovered. Images of the distribution of copper impurity over the silicon surface under atmospheric conditions are obtained using the method of kinetic phase contrast in AFM.  相似文献   

15.
In order to improve the scanning speed of tapping mode AFM, we have studied the phase-detection mode AFM with a high frequency (1.5 MHz) cantilever. The phase shifts versus tip-sample distance with different types of samples including polymer, semiconductor, and graphite were measured and the interaction forces were analyzed. It was found that the phase shift in repulsive region is nearly linear as a function of distance, which can be used for feedback control in general, except that some blunt tips cause reversed polarity of phase shift due to excessive energy dissipation. High-speed image with scan rate of 100 Hz was obtained which were controlled with phase shift as a feedback signal.  相似文献   

16.
A comparison between roughness data obtained with an atomic force microscope (AFM) on different surfaces requires reliable roughness parameters. In order to specify the appropriate parameters for nanoscale roughness measurements, we compared the root mean square (rms) roughness and the relative surface area (sdr) as function of varying scan size, speed and pixel size. By using oxygen plasma (24 kJ) treated SU-8 with an average rms roughness of 2.6 ± 0.5 nm as reference surface, the repeatability of the method was evaluated for dynamic (tapping) and contact mode. The evaluation of AFM images indicated a decrease of the effective tip radius after a few measurements. This degradation of the tip lowers the resolution of the image and can affect roughness measurements.  相似文献   

17.
In this work we discuss the influence of the atomic force microscopy (AFM) probe tip geometry and the object — quantum dot form on the quantum dots dimension in the growth plane reconstructed from the AFM measurements. It is shown that ignoring the geometry of the probe tip and the quantum dot leads to significant differences between dimensions obtained from the AFM measurements and the real dimensions. Inaccuracies in QD size determination of the nano-objects from AFM measurements are defined.  相似文献   

18.
19.
Identification of energy-dissipation processes at the nanoscale is demonstrated by using amplitude-modulation atomic force microscopy. The variation of the energy dissipated on a surface by a vibrating tip as a function of its oscillation amplitude has a shape that singles out the dissipative process occurring at the surface. The method is illustrated by calculating the energy-dissipation curves for surface energy hysteresis, long-range interfacial interactions and viscoelasticity. The method remains valid with independency of the amount of dissipated energy per cycle, from 0.1 to 50 eV. The agreement obtained between theory and experiments performed on silicon and polystyrene validates the method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号