首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the use of a preconditioning technique for solving linear systems of saddle point type arising from the application of an inexact Gauss?CNewton scheme to PDE-constrained optimization problems with a hyperbolic constraint. The preconditioner is of block triangular form and involves diagonal perturbations of the (approximate) Hessian to insure nonsingularity and an approximate Schur complement. We establish some properties of the preconditioned saddle point systems and we present the results of numerical experiments illustrating the performance of the preconditioner on a model problem motivated by image registration.  相似文献   

2.
We construct an algebraic multigrid (AMG) based preconditioner for the reduced Hessian of a linear‐quadratic optimization problem constrained by an elliptic partial differential equation. While the preconditioner generalizes a geometric multigrid preconditioner introduced in earlier works, its construction relies entirely on a standard AMG infrastructure built for solving the forward elliptic equation, thus allowing for it to be implemented using a variety of AMG methods and standard packages. Our analysis establishes a clear connection between the quality of the preconditioner and the AMG method used. The proposed strategy has a broad and robust applicability to problems with unstructured grids, complex geometry, and varying coefficients. The method is implemented using the Hypre package and several numerical examples are presented.  相似文献   

3.
Using the equivalent block two-by-two real linear systems and relaxing technique, we establish a new block preconditioner for a class of complex symmetric indefinite linear systems. The new preconditioner is much closer to the original block two-by-two coefficient matrix than the Hermitian and skew-Hermitian splitting (HSS) preconditioner. We analyze the spectral properties of the new preconditioned matrix, discuss the eigenvalue distribution and derive an upper bound for the degree of its minimal polynomial. Finally, some numerical examples are provided to show the effectiveness and robustness of our proposed preconditioner.  相似文献   

4.
John W. Pearson 《PAMM》2015,15(1):727-730
We consider the numerical solution of time-dependent Stokes control problems, an important class of flow control problems within the field of PDE-constrained optimization. The problems we examine lead to large and sparse matrix systems which, with suitable rearrangement, can be written in block tridiagonal form, with the diagonal blocks given by saddle point systems. Using previous results for preconditioning PDE-constrained optimization and fluid dynamics problems, along with well-studied saddle point theory, we construct a block triangular preconditioner for the matrix systems. Numerical experiments verify the effectiveness of our solver. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
王元媛  卢琳璋 《数学研究》2008,41(3):240-250
在求块Toeplitz矩阵束(Amn,Bmn)特征值的Lanczos过程中,通过对移位块Toepltz矩阵Amn-ρBmn进行基于sine变换的块预处理,从而改进了位移块Toeplitz矩阵的谱分布,加速了Lanczos过程的收敛速度.该块预处理方法能通过快速算法有效快速执行.本文证明了预处理后Lanczos过程收敛迅速,并通过实验证明该算法求解大规模矩阵问题尤其有效.  相似文献   

6.
本文提供修正近似信赖域类型路经三类预条件弧线路径方法解无约束最优化问题.使用对称矩阵的稳定Bunch-Parlett易于形成信赖域子问题的弧线路径,使用单位下三角矩阵作为最优路径和修正梯度路径的预条件因子.运用预条件因子改进Hessian矩阵特征值分布加速预条件共轭梯度路径收敛速度.基于沿着三类路径信赖域子问题产生试探步,将信赖域策略与非单调线搜索技术相结合作为新的回代步.理论分析证明在合理条件下所提供的算法是整体收敛性,并且具有局部超线性收敛速率,数值结果表明算法的有效性.  相似文献   

7.
Potential flow pressure matching is a classical inverse design aerodynamic problem. The resulting loss of regularity during the optimization poses challenges for shape optimization with normal perturbation of the surface mesh nodes. Smoothness is not enforced by the parameterization but by a proper choice of the scalar product based on the shape Hessian, which is derived in local coordinates for starshaped domains. Significant parts of the Hessian are identified and combined with an aerodynamic panel solver. The resulting shape Hessian preconditioner is shown to lead to superior convergence properties of the resulting optimization method. Additionally, preconditioning gives the potential for level independent convergence.  相似文献   

8.
In this paper, an improved block splitting preconditioner for a class of complex symmetric indefinite linear systems is proposed. By adopting two iteration parameters and the relaxation technique, the new preconditioner not only remains the same computational cost with the block preconditioners but also is much closer to the original coefficient matrix. The theoretical analysis shows that the corresponding iteration method is convergent under suitable conditions and the preconditioned matrix can have well-clustered eigenvalues around (0,1) with a reasonable choice of the relaxation parameters. An estimate concerning the dimension of the Krylov subspace for the preconditioned matrix is also obtained. Finally, some numerical experiments are presented to illustrate the effectiveness of the presented preconditioner.  相似文献   

9.
This paper introduces an algorithm for convex minimization which includes quasi-Newton updates within a proximal point algorithm that depends on a preconditioned bundle subalgorithm. The method uses the Hessian of a certain outer function which depends on the Jacobian of a proximal point mapping which, in turn, depends on the preconditioner matrix and on a Lagrangian Hessian relative to a certain tangent space. Convergence is proved under boundedness assumptions on the preconditioner sequence. Research supported by NSF Grant No. DMS-9402018 and by Institut National de Recherche en Informatique et en Automatique, France.  相似文献   

10.
Simultaneous Pseudo-Timestepping for PDE-Model Based Optimization Problems   总被引:2,自引:0,他引:2  
In this paper we present a new method for the solution of optimization problems with PDE constraints. It is based on simultaneous pseudo-time stepping for evolution equations. The new method can be viewed as a continuous reduced SQP method in the sense that it uses a preconditioner derived from that method. The reduced Hessian in the preconditioner is approximated by a pseudo-differential operator, whose symbol can be investigated analytically. We apply our method to a boundary control model problem. The new optimization method needs 3.2-times the overall computational effort of the solution of simulation problem alone.  相似文献   

11.
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is convex (or even uniformly convex). We propose to solve unconstrained nonconvex optimization problems by a self-scaling BFGS algorithm with nonmonotone linear search. Nonmonotone line search has been recognized in numerical practices as a competitive approach for solving large-scale nonlinear problems. We consider two different nonmonotone line search forms and study the global convergence of these nonmonotone self-scale BFGS algorithms. We prove that, under some weaker condition than that in the literature, both forms of the self-scaling BFGS algorithm are globally convergent for unconstrained nonconvex optimization problems.  相似文献   

12.
In this paper, a class of generalized shift-splitting preconditioners with two shift parameters are implemented for nonsymmetric saddle point problems with nonsymmetric positive definite (1, 1) block. The generalized shift-splitting (GSS) preconditioner is induced by a generalized shift-splitting of the nonsymmetric saddle point matrix, resulting in an unconditional convergent fixed-point iteration. By removing the shift parameter in the (1, 1) block of the GSS preconditioner, a deteriorated shift-splitting (DSS) preconditioner is presented. Some useful properties of the DSS preconditioned saddle point matrix are studied. Finally, numerical experiments of a model Navier–Stokes problem are presented to show the effectiveness of the proposed preconditioners.  相似文献   

13.
We present an algorithm, partitioning group correction (PGC) algorithm based on trust region and conjugate gradient method, for large-scale sparse unconstrained optimization. In large sparse optimization, computing the whole Hessian matrix and solving the Newton-like equations at each iteration can be considerably expensive when a trust region method is adopted. The method depends on a symmetric consistent partition of the columns of the Hessian matrix and an inaccurate solution to the Newton-like equations by conjugate gradient method. And we allow that the current direction exceeds the trust region bound if it is a good descent direction. Besides, we studies a method dealing with some sparse matrices having a dense structure part. Some good convergence properties are kept and we contrast the computational behavior of our method with that of other algorithms. Our numerical tests show that the algorithm is promising and quite effective, and that its performance is comparable to or better than that of other algorithms available.  相似文献   

14.
In this paper we investigate the possibility of using a block‐triangular preconditioner for saddle point problems arising in PDE‐constrained optimization. In particular, we focus on a conjugate gradient‐type method introduced by Bramble and Pasciak that uses self‐adjointness of the preconditioned system in a non‐standard inner product. We show when the Chebyshev semi‐iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble–Pasciak method—the appropriate scaling of the preconditioners—is easily overcome. We present an eigenvalue analysis for the block‐triangular preconditioners that gives convergence bounds in the non‐standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we consider iterative algorithms of Uzawa type for solving linear nonsymmetric saddle point problems. Specifically, we consider systems, written as usual in block form, where the upper left block is an invertible linear operator with positive definite symmetric part. Such saddle point problems arise, for example, in certain finite element and finite difference discretizations of Navier-Stokes equations, Oseen equations, and mixed finite element discretization of second order convection-diffusion problems. We consider two algorithms, each of which utilizes a preconditioner for the operator in the upper left block. Convergence results for the algorithms are established in appropriate norms. The convergence of one of the algorithms is shown assuming only that the preconditioner is spectrally equivalent to the inverse of the symmetric part of the operator. The other algorithm is shown to converge provided that the preconditioner is a sufficiently accurate approximation of the inverse of the upper left block. Applications to the solution of steady-state Navier-Stokes equations are discussed, and, finally, the results of numerical experiments involving the algorithms are presented.

  相似文献   


16.
Use of the stochastic Galerkin finite element methods leads to large systems of linear equations obtained by the discretization of tensor product solution spaces along their spatial and stochastic dimensions. These systems are typically solved iteratively by a Krylov subspace method. We propose a preconditioner, which takes an advantage of the recursive hierarchy in the structure of the global matrices. In particular, the matrices posses a recursive hierarchical two‐by‐two structure, with one of the submatrices block diagonal. Each of the diagonal blocks in this submatrix is closely related to the deterministic mean‐value problem, and the action of its inverse is in the implementation approximated by inner loops of Krylov iterations. Thus, our hierarchical Schur complement preconditioner combines, on each level in the approximation of the hierarchical structure of the global matrix, the idea of Schur complement with loops for a number of mutually independent inner Krylov iterations, and several matrix–vector multiplications for the off‐diagonal blocks. Neither the global matrix nor the matrix of the preconditioner need to be formed explicitly. The ingredients include only the number of stiffness matrices from the truncated Karhunen–Loève expansion and a good preconditioned for the mean‐value deterministic problem. We provide a condition number bound for a model elliptic problem, and the performance of the method is illustrated by numerical experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Boundary value methods (BVMs) for ordinary differential equations require the solution of non‐symmetric, large and sparse linear systems. In this paper, these systems are solved by using the generalized minimal residual (GMRES) method. A block‐circulant preconditioner with circulant blocks (BCCB preconditioner) is proposed to speed up the convergence rate of the GMRES method. The BCCB preconditioner is shown to be invertible when the BVM is Ak1,k2‐stable. The spectrum of the preconditioned matrix is clustered and therefore, the preconditioned GMRES method converges fast. Moreover, the operation cost in each iteration of the preconditioned GMRES method by using our BCCB preconditioner is less than that required by using block‐circulant preconditioners proposed earlier. In numerical experiments, we compare the number of iterations of various preconditioners. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
针对由Galerkin有限元离散椭圆PDE-约束优化问题产生的具有特殊结构的3×3块线性鞍点系统,提出了一个预条件子并给出了预处理矩阵特征值及特征向量的具体表达形式.数值结果表明了该预条件子能够有效地加速Krylov子空间方法的收敛速率,同时也验证了理论结果.  相似文献   

19.
20.
For non-Hermitian saddle point linear systems, Pan, Ng and Bai presented a positive semi-definite and skew-Hermitian splitting (PSS) preconditioner (Pan et al. Appl. Math. Comput. 172, 762–771 2006), to accelerate the convergence rate of the Krylov subspace iteration methods like the GMRES method. In this paper, a relaxed positive semi-definite and skew-Hermitian (RPSS) splitting preconditioner based on the PSS preconditioner for the non-Hermitian generalized saddle point problems is considered. The distribution of eigenvalues and the form of the eigenvectors of the preconditioned matrix are analyzed. Moreover, an upper bound on the degree of the minimal polynomial is also studied. Finally, numerical experiments of a model Navier-Stokes equation are presented to illustrate the efficiency of the RPSS preconditioner compared to the PSS preconditioner, the block diagonal preconditioner (BD), and the block triangular preconditioner (BT) in terms of the number of iteration and computational time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号