首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time it is shown that the logic of quantum mechanics can be derived from classical physics. An orthomodular lattice of propositions characteristic of quantum logic, is constructed for manifolds in Einstein’s theory of general relativity. A particle is modelled by a topologically non-trivial 4-manifold with closed timelike curves—a 4-geon, rather than as an evolving 3-manifold. It is then possible for both the state preparationand measurement apparatus to constrain the results of experiments. It is shown that propositions about the results of measurements can satisfy a non-distributive logic rather than the Boolean logic of classical systems. Reasonable assumptions about the role of the measurement apparatus leads to an orthomodular lattice of propositions characteristic of quantum logic.  相似文献   

2.
Ciann-Dong Yang   《Annals of Physics》2006,321(12):2876-2926
This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schrödinger equation. Using complex canonical variables, a formal proof of the quantization axiom p →  = −i, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov–Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion.  相似文献   

3.
The subject of this article is the reconstruction of quantum mechanics on the basis of a formal language of quantum mechanical propositions. During recent years, research in the foundations of the language of science has given rise to adialogic semantics that is adequate in the case of a formal language for quantum physics. The system ofsequential logic which is comprised by the language is more general than classical logic; it includes the classical system as a special case. Although the system of sequential logic can be founded without reference to the empirical content of quantum physical propositions, it establishes an essential part of the structure of the mathematical formalism used in quantum mechanics. It is the purpose of this paper to demonstrate the connection between the formal language of quantum physics and its representation by mathematical structures in a self-contained way.  相似文献   

4.
Quantum de Rham complexes on the quantum plane and the quantum group itself are constructed for the nonstandard deformation of Fun(SL(2)). It is shown that in contrast to the standardq-deformation of SL(2), the above complexes are unique for SL h (2). Also, as a byproduct, a new deformation of the two-dimensional Heisenberg algebra is obtained which can be used to construct models ofh-deformed quantum mechanics.  相似文献   

5.
The logic of quantum mechanical propositions—called quantum logic—is constructed on the basis of the operational foundation of logic. Some obvious modifications of the operational method, which come from the incommensurability of the quantum mechanical propositions, lead to the effective quantum logic. It is shown in this paper that in the framework of a calculization of this effective quantum logic the negation of a proposition is uniquely defined (Theorem I), and that a weak form of the quasimodular law can be derived (Theorem II). Taking account of the definiteness of truth values for quantum mechanical propositions, the calculus of full quantum logic can be derived (Theorem III). This calculus represents an orthocomplemented quasimodular lattice which has as a model the lattice of subspaces of Hilbert space.  相似文献   

6.
The first three of these axioms describe quantum theory and classical mechanics as statistical theories from the very beginning. With these, it can be shown in which sense a more general than the conventional measure theoretic probability theory is used in quantum theory. One gets this generalization defining transition probabilities on pairs of events (not sets of pairs) as a fundamental, not derived, concept. A comparison with standard theories of stochastic processes gives a very general formulation of the non existence of quantum theories with hidden variables. The Cartesian product of probability spaces can be given a natural algebraic structure, the structure of an orthocomplemented, orthomodular, quasi-modular, not modular, not distributive lattice, which can be compared with the quantum logic (lattice of all closed subspaces of an infinite dimensional Hubert space). It is shown how our given system of axioms suggests generalized quantum theories, especially Schrödinger equations, for phase space amplitudes.  相似文献   

7.
8.
9.
10.
An extension of the formalism of quantum mechanics to the case where the canonical variables are valued in a field ofp-adic numbers is considered. In particular the free particle and the harmonic oscillator are considered. In classicalp-adic mechanics we consider time as ap-adic variable and coordinates and momentum orp-adic or real. For the case ofp-adic coordinates and momentum quantum mechanics with complex amplitudes is constructed. It is shown that the Weyl representation is an adequate formulation in this case. For harmonic oscillator the evolution operator is constructed in an explicit form. For primesp of the form 4l+1 generalized vacuum states are constructed. The spectra of the evolution operator have been investigated. Thep-adic quantum mechanics is also formulated by means of probability measures over the space of generalized functions. This theory obeys an unusual property: the propagator of a massive particle has power decay at infinity, but no exponential one.  相似文献   

11.
On the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space.  相似文献   

12.
It is shown that in the complex trajectory representation of quantum mechanics, the Born’s ΨΨ probability density can be obtained from the imaginary part of the velocity field of particles on the real axis. Extending this probability axiom to the complex plane, we first attempt to find a probability density by solving an appropriate conservation equation. The characteristic curves of this conservation equation are found to be the same as the complex paths of particles in the new representation. The boundary condition in this case is that the extended probability density should agree with the quantum probability rule along the real line. For the simple, time-independent, one-dimensional problems worked out here, we find that a conserved probability density can be derived from the velocity field of particles, except in regions where the trajectories were previously suspected to be nonviable. An alternative method to find this probability density in terms of a trajectory integral, which is easier to implement on a computer and useful for single particle solutions, is also presented. Most importantly, we show, by using the complex extension of Schrodinger equation, that the desired conservation equation can be derived from this definition of probability density.  相似文献   

13.
A joint distribution of a set of observables on a quantum logic in a statem is defined and its properties are derived. It is shown that if the joint distribution exists, then the observables can be represented in the statem by a set of commuting operators on a Hilbert space.  相似文献   

14.
It is shown that an orthomodular lattice can be axiomatized as an ortholattice with aunique operation of identity (bi-implication) instead of the operation of implication, and a corresponding algebraic unified quantum logic is formulated. A statisticalyes-no physical interpretation of the quantum logical propositions is then provided to establish a support for a novelyes-no representation of quantum logic which prompts a conjecture about a possible completion of quantum logic by means of probabilistic forcing.  相似文献   

15.
According to quantum mechanics, the change in a measured variable, following a measurement of it, cannot be obtained. In the present paper, a thought-experiment is developed in which the change can be obtained by means of an extension of quantum mechanics. It is, then, claimed that quantum mechanics permits nonlocal determinism through state reduction, in terms of its extension.  相似文献   

16.
17.
This paper outlines a framework that may provide a mathematically rigorous quantum field theory. The framework relies upon the methods of nonstandard analysis. A theory of nonstandard inner product spaces and operators on these spaces is first developed. This theory is then applied to construct nonstandard Fock spaces which extend the standard Fock spaces. Then a rigorous framework for the field operators of quantum field theory is presented. The results are illustrated for the case of Klein-Gordon fields.  相似文献   

18.
On quantum logic     
The status and justification of quantum logic are reviewed. On the basis of several independent arguments it is concluded that it cannot be a logic in the philosophical sense of a general theory concerning the structure of valid inferences. Taken as a calculus for combining quantum mechanical propositions, it leaves a number of significant aspects of quantum physics unaccounted for. It is shown, moreover, that quantum logic, far from being more general than Boolean logic, forms a subset of a slight and natural extension of Boolean logic, a subset which corresponds to incomplete statements. The philosophical background of this unsatisfactory state of affairs is briefly explored.  相似文献   

19.
Many scholars maintain that the language of quantum mechanics introduces a quantum notion of truth which is formalized by (standard, sharp) quantum logic and is incompatible with the classical (Tarskian) notion of truth. We show that quantum logic can be identified (up to an equivalence relation) with a fragment of a pragmatic language \(\mathcal {L}_{G}^{P}\) of assertive formulas, that are justified or unjustified rather than trueor false. Quantum logic can then be interpreted as an algebraic structure that formalizes properties of the notion of empirical justification according to quantum mechanics rather than properties of a quantum notion of truth. This conclusion agrees with a general integrationist perspective that interprets nonstandard logics as theories of metalinguistic notions different from truth, thus avoiding incompatibility with classical notions and preserving the globality of logic.  相似文献   

20.
A general axiom system, including both classical and quantum mechanics as special cases, is proposed. On the basis of the axioms assumed it is shown that the logic of experimentally verifiable propositions concerning any (classical or quantum) physical system may be embedded into an atomistic complete lattice. Moreover, in the quantum case (characterized in the paper by validity of the superposition principle) a generalization of the Piron's representation theorem for the logic is stated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号