首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human body is exposed to ionising radiations both internally and externally by mainly high-energy cosmic ray particles incident on the earth's atmosphere and radioactive nuclides that originated in the earth's crust. The main objective of this study is to assess the health hazards due to environmental radiation sources in the city of Adapazari, one of the most important industrial cities of the country, Northwestern Turkey. For this purpose, natural radiation sources, external terrestrial radiations, cosmic radiations, and inhalation exposures have been investigated. The annual average external terrestrial radiation doses were determined as 0.08 and 0.35 mSv at outdoor and indoor atmospheres, respectively. The annual average cosmic radiation doses were found to be 0.08 and 0.05 mSv for directly ionising photon components and neutron components, respectively. The annual average inhalation exposure doses due to radon and thoron were obtained as 1.42 and 0.19 mSv, respectively, in the region. The annual average effective dose due to natural radiation sources was determined as a total of 2.35 mSv with the predetermined ingestion radiation dose. The lifetime cancer risk due to the background ionising radiations has been determined as 0.9×10?2 for the residents of the Adapazari city, with the average lifespan of 70 years. The results of the effective doses due to background radiation sources in the region and the worldwide averages were discussed.  相似文献   

2.
Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled therapeutic 131I (2.5 mSv). In conclusion, the maximum expected annual dose to extremities is less than the annual limit (500 mSv/y).  相似文献   

3.
Human body is exposed to ionising radiations both internally and externally by mainly high-energy cosmic ray particles incident on the earth's atmosphere and radioactive nuclides that originated in the earth's crust. The main objective of this study is to assess the health hazards due to environmental radiation sources in the city of Adapazari, one of the most important industrial cities of the country, Northwestern Turkey. For this purpose, natural radiation sources, external terrestrial radiations, cosmic radiations, and inhalation exposures have been investigated. The annual average external terrestrial radiation doses were determined as 0.08 and 0.35 mSv at outdoor and indoor atmospheres, respectively. The annual average cosmic radiation doses were found to be 0.08 and 0.05 mSv for directly ionising photon components and neutron components, respectively. The annual average inhalation exposure doses due to radon and thoron were obtained as 1.42 and 0.19 mSv, respectively, in the region. The annual average effective dose due to natural radiation sources was determined as a total of 2.35 mSv with the predetermined ingestion radiation dose. The lifetime cancer risk due to the background ionising radiations has been determined as 0.9×10(-2) for the residents of the Adapazari city, with the average lifespan of 70 years. The results of the effective doses due to background radiation sources in the region and the worldwide averages were discussed.  相似文献   

4.
A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual 222Rn activity in the surveyed area was found to be 49 Bq m?3 (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m?3. The estimated annual effective doses are less than the recommended action level (3–10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg?1 for 226Ra, 232Th, 40K and 137Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.  相似文献   

5.
This study examined the radiation dose, computed tomography (CT) number, contrast and image quality of patients requiring periodic follow-up abdominal CT examinations at various tube voltages. The subjects were divided into two groups. One group consisted of patients who underwent a clinical analysis and the other group was a phantom one. Somatom Sensation 16 (Siemens, Erlangen, Germany) was used. Twenty patients who underwent a periodic follow-up examination by CT were selected randomly. The tube current was fixed to 150 mA, and the tube voltage was adjusted according to the appropriate value of each examination. The computed tomography dose index (CTDI) values were measured. The CT number of each organ was measured by setting up a 1 cm diameter return on investment (ROI) in the abdominal organs at the same height of the first lumbar vertebra using images of the arterial phase. Two radiologists in consensus graded the quality of the abdominal images into three groups. An abdomen-shaped acrylic phantom was used in the phantom study. An ion chamber was inserted into the holes located at the center and periphery of the phantom, where the radiation dose was automatically displayed on the reader. Tube voltages of 80, 100, 120 and 140 kVp were applied to the phantom (diluted contrast medium with water at 1:10 ratio) and the phantom was scanned. The CT number was measured from a 1 cm diameter ROI at the center of the image. The CTDI value decreased by 36% at 100 kVp (7.50 mGy) compared with that at 120 kVp (11.70 mGy). According to the radiologists’ evaluation, there were 17 equivalent, 3 acceptable and 0 unacceptable levels in the group of 20 subjects. The radiation dose in the phantom study decreased with increasing tube voltages from 80 to 140 kVp. The peripheral and central doses decreased by 38% and 41%, respectively. The CT numbers at 80, 100, 120 and 140 kVp were 1365.9±4.4, 1046.1±3.7, 862.8±3.2 and 737.5±3.0 HU, respectively. In conclusion, in a follow-up observation for the detection of a recurrence or metastasis after surgery or patients with chronic abdominal diseases, the exposure doses can be reduced using a low-voltage peak CT examination without greatly changing the image quality.  相似文献   

6.
Cosmic radiation is one of the most important sources of human exposure to natural radiation. Data regarding the level of cosmic radiation in different areas of Pakistan are lacking. The aim of the present study was therefore to estimate the annual outdoor effective doses from cosmic radiation in the Punjab province of Pakistan. The Punjab province is located between geodetic latitudes 28° and 34° N, and longitudes 69° and 75° E. The mean value of the outdoor annual effective dose was found to be 333 μ Sv, which generates a radiation dose of 0.33 mSv y?1 per caput. This is 87% of radiation dose received by the population in the region from terrestrial sources reported elsewhere. The results of this study will contribute to regional as well as world data regarding the exposure of the population to cosmic radiation.  相似文献   

7.
222Rn (radon) is one of the most important sources of natural radiation to which people are exposed. It is an alpha-emitting noble gas and it can be found in various concentrations in soil, air and in different kinds of water. In this study, we present the results of radon concentration measurements in thermal waters taken from the sources in the region of Konya located in the central part of Turkey. The radon activity concentrations in 10 thermal water samples were measured by using the AlphaGUARD PQ 2000PRO radon gas analyser in spring and summer of the year 2012. We found that radon activity concentrations range from 0.60±0.11 to 70.34±3.55 kBq m?3 and from 0.67±0.03 to 36.53±4.68 kBq m?3 in spring and summer, respectively. We also calculated effective doses per treatment in the spas for the spring and summer seasons. It was found that the minimum and maximum effective doses per treatment are in the range of 0.09–10.13 nSv in spring and in the range of 0.1–5.26 nSv in summer.  相似文献   

8.
In this study, an adhesive of a polyurethane derivate from castor oil was irradiated with gamma radiation from a 60Co source, at doses from 0.2 to 25 kGy. This adhesive polyurethane is considered for use in hospital furniture because it does not liberate dangerous solvents. Hardness and elastic modulus were measured by instrumented indentation with a pyramidal Berkovich indenter, using loads from 0.08–40 mN with a nanoindenter XP. The instrumented indentation hardness was 110 MPa for an untreated sample, increasing to 124 MPa after irradiation with 25 kGy, at penetration depths of about 5 μm. The increases in elastic modulus induced by radiation were less pronounced. This polyurethane is naturally cross-linked and the relative modifications in the hardness are attributed to an additional cross-linking process induced by radiation. X-ray diffraction indicates a slight increase in crystallinity. The roughness measured by atomic force microscopy increases after gamma irradiation.  相似文献   

9.
This study examined individual doses of Korean radiation workers divided into deep and surface doses based on the dose limits recommended by the International Commission on Radiological Protection (ICRP) or ICRP 103 (approved on March 2007) for 5 years from 2006 to 2010. In addition, the exposure doses were compared according to occupation, departments and scale of the medical institutions (primary, secondary and tertiary) as well as between dental hospitals and hospitals, which is currently an issue, using 116,220 sets of data on the quarterly and yearly exposure doses of 5811 Korean radiation workers measured over a 5-year period (January 2006 to December 2010). For the mean exposure doses according to occupation, both deep and surface doses were higher in radiological technicians than in the other occupations and there was a significant difference between radiological technicians and others (researchers and assistants) (p<0.05). The results showed that none of the Korean radiation workers were exposed to radiation doses exceeding the maximum tolerant dose or 20 mSv/year recommended by the ICRP. When the mean exposure doses were compared according to the departments, both deep and surface doses were significantly higher (p<0.05) in the department of nuclear medicine than in the other departments (the department of biomedical engineering and the management team). For the mean exposure doses according to the scale of the medical institutions, the doses were highest in tertiary medical institutions followed in order by secondary and primary medical institutions (p<0.05). A comparison of the mean exposure doses in dental hospitals and hospitals revealed both deep and surface doses to be higher in hospitals than in dental hospitals (p<0.05). This study is considered to be used as basic data to establish a system for exposure dose management of radiation workers and more accurate studies on the radiation exposure are necessary in the future.  相似文献   

10.
In the present study, 40 adult male albino rats were used to study the effect of gamma radiation on the hard dental tissues (enamel surface, dentinal tubules and the cementum surface). The rats were irradiated at 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0 Gy gamma doses. The effects of irradiated hard dental tissues samples were investigated using a scanning electron microscope. For doses up to 0.5 Gy, there was no evidence of the existence of cracks on the enamel surface. With 1 Gy irradiation dose, cracks were clearly observed with localized erosive areas. At 2 Gy irradiation dose, the enamel showed morphological alterations as disturbed prismatic and interprismatic areas. An increase in dentinal tubules diameter and a contemporary inter-tubular dentine volume decrease were observed with higher irradiation dose. Concerning cementum, low doses,<0.5 Gy, showed surface irregularities and with increase in the irradiation dose to≥1 Gy, noticeable surface irregularities and erosive areas with decrease in Sharpey's fiber sites were observed. These observations could shed light on the hazardous effects of irradiation fields to the functioning of the human teeth.  相似文献   

11.
The dose distributions at the region of eye lens and extremities of staff working in interventional cardiology were analyzed. The doses to physicians and nurses from three hospitals in Poland were measured with TL dosimeters (MCP-N) located on various places near eyebrows, on both fingers, wrists, knees and on the ankle. The procedures under investigation were coronary angiography (CA) and percutaneous coronary intervention (PCI), peacemaker and defibrillator implantations (PM/ICDs), cardiac resynchronization therapy with or without defibrillator implantations (CRT-D or CRT) and radiofrequency ablations (RFA). The study aimed at analyzing the distribution of radiation in selected anatomic regions, determining the typical locations of highest doses and estimating the dose ranges for selected types of procedures.The maximum registered doses per procedure to eye lens and ankle were 1.21 mSv and 1.46 mSv for CA PCI procedures, 0.02 mSv and 0.05 mSv for RFA and 0.13 mSv and 0.51 mSv for PM/ICDs, respectively. The maximum doses to fingers, wrists and knees were, accordingly, 2.11 mSv, 1.07 mSv and 0.77 mSv for CA PCI procedures, 0.38 mSv, 0.20 mSv and 0.04 mSv for RFA ones, 0.50 mSv, 0.25 mSv and 0.01 mSv for PM/ICDs procedures and 2.25 mSv, 1.12 mSv and 0.58 mSv for CRT and CRT-D ones. The factors which might influence the dose like utilized radiation, availability of additional protective equipment and position of the staff with respect to X-ray source were also analyzed.The annual doses for eye lens and extremities were estimated on the basis of individual annual workloads of the physicians participating in the study. The highest annual doses were revealed for physicians performing CA PCI procedures. Annual eye lens doses range up to 247 mSv indicating that the occupational limit for eye lens 150 mSv has been surpassed. In case of extremities the maximal estimated annual doses were 355 mSv, 136 mSv, 55 mSv and 328 mSv, for fingers, wrists, knees and for ankle, respectively. Moreover, in the light of ICRP new Statement on Tissue Reactions raising the possibility of lowering the annual limit for the lens of the eye the annual doses estimated in our paper indicate that for some procedures the monitoring of eye lens doses should be considered. On the other hand, it is important to note that most of high occupational doses can be easily avoided if radiation protection tools are used and, moreover, used properly.The present survey is a part of ORAMED project concerning the determination of doses to extremities (fingers, wrists and knees) and eye lens during interventional procedures and includes the detailed analyses of results of Polish partner. They are, however, presented in wider context. The study is additionally extended by the investigation of the dose distribution at the eyebrows and ankle level.  相似文献   

12.
High doses of ionising radiation are becoming increasingly common for radiation-processing applications of various medical, agricultural and polymer products using gamma and electron beams. The objective of this work was to study thermoluminescence (TL) glow-curve characteristics of commonly used commercial LiF TL phosphors at high doses of radiation with a view to use them in dosimetry of radiation-processing applications. The TL properties of TLD 100 and 700 phosphors, procured from the Thermo-Scientific (previously Harshaw) company, have been studied in the dose range of 1–60 kGy. The shift in glow peaks was observed in this dose range. Integral TL responses of TLD 100 and TLD 700 were found to decrease as a linear function of dose in the range of 5–50 kGy. The paper describes initial results related to the glow-curve characteristics of these phosphors.  相似文献   

13.
The radiation survey of the ambient environment was conducted using two gamma detectors, and the measurement results were used in the computation of the mean external radiation dose rate, mean-weighted dose rate and annual effective dose, which are 144 nGy h?1, 0.891 mSv y?1 and 178 μSv, respectively. A high-purity germanium detector was used to determine the activity concentrations of 232Th, 226Ra and 40K in soil samples. The results of the gamma spectrometry of the soil samples show radioactivity concentration ranges from 19±1 to 405±13 Bq kg?1 with a mean value of 137±5 Bq kg?1 for 232Th, from 21±2 to 268±9 Bq kg?1with a mean value of 78±3 Bq kg?1 for 226Ra and from 23±9 to 1268±58 Bq kg?1 with a mean value of 207±13 Bq kg?1 for 40K. Radium equivalent activity (Raeq) and external hazard index (Hex) were 290 Bq kg?1 and 0.784, respectively, which were safe for the population. The mean lifetime dose and lifetime cancer risk for each person living in the area with average lifetime (70 y) were 12.46 mSv and 7.25×10?4 Sv year, respectively. The results were compared with values given in United Nations Scientific Committee on the Effects of Atomic Radiation 2000.  相似文献   

14.
The purpose of this study was to measure the radiation exposure to operator and patient during cardiac electrophysiology study, radiofrequency catheter ablation and cardiac device implantation procedures and to calculate the allowable number of cases per year. We carried out 9 electrophysiology studies, 40 radiofrequency catheter ablation and 11 cardiac device implantation procedures. To measure occupational radiation dose and dose–area product (DAP), 13 photoluminescence glass dosimeters were placed at eyes (inside and outside lead glass), thyroids (inside and outside thyroid collar), chest (inside and outside lead apron), wrists, genital of the operator (inside lead apron), and 6 of photoluminescence glass dosimeters were placed at eyes, thyroids, chest and genital of the patient. Exposure time and DAP values were 11.7?±?11.8?min and 23.2?±?26.2?Gy?cm2 for electrophysiology study; 36.5?±?42.1?min and 822.4?±?125.5?Gy?cm2 for radiofrequency catheter ablation; 16.2?±?9.3?min and 27.8?±?16.5?Gy?cm2 for cardiac device implantation procedure, prospectively. 4591 electrophysiology studies can be conducted within the occupational exposure limit for the eyes (150?mSv), and 658-electrophysiology studies with radiofrequency catheter ablation can be carried out within the occupational exposure limit for the hands (500?mSv). 1654 cardiac device implantation procedure can be conducted within the occupational exposure limit for the eyes (150?mSv). The amounts of the operator and patient's radiation exposure were comparatively small. So, electrophysiology study, radio frequency catheter ablation and cardiac device implantation procedures are safe when performed with modern equipment and optimized protective radiation protect equipment.  相似文献   

15.
《Comptes Rendus Physique》2002,3(7-8):1035-1048
The average effective dose at the global level is, according to UNSCEAR, estimated to be 2.4 mSv from naturally occurring sources. This average value can be divided as follows: 1.3 mSv associated with radon, 0.39 mSv from cosmic radiation, 0.46 mSv from terrestrial radiation, and 0.23 mSv from internal radiation, radon excluded. These values can vary quite significantly depending on the place of habitation. Despite this large variation, no sound epidemiological study has yet shown the health effects on the most exposed populations, apart from a few studies concerning radon, but in which the predominant role of tobacco is difficult to determine. To cite this article: H. Métivier, C. R. Physique 3 (2002) 1035–1048.  相似文献   

16.
Electron paramagnetic resonance (EPR) dosimetry of tooth enamel in X-band has been established as a suitable method for individual reconstruction of doses 0.1 Gy and higher. The objective was to demonstrate the feasibility of using Q-band EPR in small biopsy tooth enamel samples to provide accurate measurements of radiation doses. Q-band spectra of small (<10 mg) irradiated samples of dentine and bone were studied to investigate the possibility of using Q-band EPR for dose measurements in those materials if there are limited amounts of enamel available, and there is no time for the chemical sample preparation required for accurate X-band measurements in dental enamel. Our results have shown that Q-band provides accurate measurements of radiation doses higher than 0.5 Gy in tooth enamel biopsy samples as small as 2 mg. Q-band EPR spectra in powdered dentine and bone demonstrated significantly higher resolution and sensitivity than in conventional X-band measurements.  相似文献   

17.
This work investigates the radiation damage on the eye of albino mice exposed to effective radon doses ranging from 20.92 to 83.68 mSv. These doses were taken over 2–8 weeks using a radon chamber constructed by the National Institute for Standard (Egypt). The guidance on the quality assurance program for radon measurements was followed. Therefore, the estimated doses received by the laboratory animals meet the requirements of national standard. The refractive index(RI) and protein concentration were measured for soluble proteins of both corneas and lenses. In addition, the sodium dodecyle sulfate polyacrylamide gel electrophoresis (SDSPAGE) technique was used. The results show increasing of the RI of both cornea and lens proteins and decreasing in total protein concentration of exposed animals. These results were accompanied with changes in the SDSPAGE profile for both cornea and lens. Therefore, radon exposure produces substantial hazards to the cornea and lens of experimental animals and has a crucial role in the development of cataract and corneal opacity.  相似文献   

18.
Noninvasive coronary angiography and calcium scoring with the use of multi-detector computed tomography scanners are feasible for reliably detecting coronary artery disease. The purpose of this study is to investigate organ dose and scattering dose for CT coronary angiography and calcium scoring using automatic tube current modulation. Organ doses of an anthropomorphic phantom were estimated using LiF:Mg,Cu,P thermoluminescent dosimeter (TLD) chips. The dose profiles inside and outside the scanning regions were measured. Effective doses for coronary angiography and calcium scoring without using automatic tube current modulation are respectively 12.72 ± 2.06 and 1.69 ± 0.30 mSv. Using automatic tube current modulation can reduce effective dose by 43% for coronary angiography, and 24–32% for calcium scoring. Scatter doses at the point of 10 cm away from the margin of scanning region decreased to 5–9% of in-plane doses. Using automatic tube current modulation can effectively reduce radiation doses inside the CT scanning region.  相似文献   

19.
The principal objective of this study was to assess the mechanisms relevant to radiation-induced damage to multicore leukocytes and platelets, using a Transmission Electron Microscope (TEM). In this study, in the group subjected to 5 Gy irradiation, platelet size was reduced by 25%, and the cell membranes were thick and not clearly visible. On the 20-day and 30-day observations, passed leukocytes and mitochondrial damage were shown to be increased. The mass of glycogen granules was also reduced. In the 7 Gy irradiation group, platelet size was even more profoundly reduced. In the erythrocytes, most echinocytes, which generally exhibit burrs, were irregularly shaped, and sickle cells were observed. In the observation of leukocytes, no evidence of radiation damage was detected in the primary or secondary granules. Damage to the nuclear membrane and cell membrane was increased. The outline of the centrosome was somewhat dim. In the 7 Gy irradiation group, no damage was detected in specific granules of the basophil. Phagocytosis of amoebal movement was observed. In some parts of the lymphocyte, nuclei were divided or formed a space between the nucleus and cytoplasm and were sensitive to radiation.  相似文献   

20.
This work presents an estimation of the neutron dose distribution for common bladder cancer cases treated with high-energy photons of 15 MV therapy accelerators. Neutron doses were measured in an Alderson phantom, using TLD 700 and 600 thermoluminescence dosimeters, resembling bladder cancer cases treated with high-energy photons from 15 MV LINAC and having a treatment plan using the four-field pelvic box technique. Thermal neutron dose distribution in the target area and the surrounding tissue was estimated. The sensitivity of all detectors for both gamma and neutrons was estimated and used for correction of the TL reading. TLD detectors were irradiated with a Co60 gamma standard source and thermal neutrons at the irradiation facility of the National Institute for Standards (NIS). The TL to dose conversion factor was estimated in terms of both Co60 neutron equivalent dose and thermal neutron dose. The dose distribution of photo-neutrons throughout each target was estimated and presented in three-dimensional charts and isodose curves. The distribution was found to be non-isotropic through the target. It varied from a minimum of 0.23 mSv/h to a maximum of 2.07 mSv/h at 6 cm off-axis. The mean neutron dose equivalent was found to be 0.63 mSv/h, which agrees with other published literature. The estimated average neutron equivalent to the bladder per administered therapeutic dose was found to be 0.39 mSv Gy?1, which is also in good agreement with published literature. As a consequence of a complete therapeutic treatment of 50 Gy high-energy photons at 15 MV, the total thermal neutron equivalent dose to the abdomen was found to be about 0.012 Sv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号