首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用基于第一性原理的平面波赝势方法,研究了Nb原子在Ni3Al中的格点取代行为及合金化效应.通过对不同原子被置换后体系的形成热、结合能及电子态密度的计算和比较,发现Nb原子倾向于取代Ni3Al中的Al原子,其取代行为主要由系统的电子结构决定,计算结果与实验相符.为了进一步研究Nb原子的取代行为,对Nb原子占据的格点以松散或紧凑分布下体系的总能、形成热、结合能以及电子态密度进行了计算,结果表明Nb原子占据的格点更倾向于紧凑分布.为了研究Nb对Ni3关键词: 第一性原理 3Al合金')" href="#">Ni3Al合金 电子结构 合金化效应  相似文献   

2.
3.
The electron paramagnetic resonance g factors and the local structure for Ni3+ in LaAl0.9Ni0.1O3 (LAN), La0.75Y0.25Al0.99Ni0.01O3 (LYAN) and YAl0.9Ni0.1O3 (YAN) are theoretically studied from the perturbation formulas of the g factors for a 3d7 ion of low spin (S = 1/2) in tetragonally elongated octahedra. In these formulas, the contributions to the g factors from the tetragonal distortion, characterized by the tetragonal field parameters Ds and Dt are taken into account. According to the calculations, the ligand octahedra around Ni3+ are suggested to suffer 2% relative elongation along the [001] (or C4) axis due to the Jahn-Teller effect.  相似文献   

4.
Abstract

The compression behaviour in a multi-anvil apparatus of pure NaCl and of a foil of Ni3Al embedded in a pressure medium of NaCl has been studied by energy-dispersive X-ray diffraction. At ambient temperature, the pressure and stresses, determined from line positions of NaCl, were constant throughout the sample chamber. Line positions and line widths of NaCl reflections were reversible on pressure release. A saturation of microstrains observed in NaCl at 2 GPa is thus attributed to brittle fracture setting in at uniaxial stresses of around 0.3 GPa. Ni3Al polycrystals, in contrast, undergo extensive (ductile) plastic deformation above 4 GPa. The compression behaviour of both Ni3Al and NaCl is identical to that previously determined in a diamond anvil cell. While a multi-anvil device thus has the advantage, compared with a diamond anvil cell, of constant pressure and stress throughout the sample chamber, microstrains in poly-crystalline samples arise in both devices. Samples in a multi-anvil apparatus thus need to be mixed with a pressure medium and to consist of essentially single crystals just as in a diamond anvil cell. Annealing experiments at high pressures confirm that the release of the uniaxial stress component in the pressure medium does not cause a release of microstrains in the embedded sample if the latter has been plastically deformed. Annealing for the purpose of attaining hydrostatic conditions in compression studies thus has to be carried out with care.  相似文献   

5.
The liquid-solid Al/Ni diffusion couple was successfully fabricated by annealing at 1373?K for 48?h followed by water-quenching. Cross-sectional scanning and transmission electron microscopic analyses show that the multilayered diffusion zones comprise the following sequence of layers: γ-Ni(Al) | γ′-Ni3Al | β′-NiAl | Ni-rich β-NiAl | β-NiAl. The Ni-rich β-NiAl upon quenching undergoes a martensitic transformation from β (B2) to β′ (L10). The β′ martensite is found to be internally twinned on the {111}<112>system. The volume changes and strains due to martensitic phase transformation, the precipitation of γ′-Ni3Al from γ-Ni(Al) and lattice mismatch between Ni-rich β-NiAl and β-NiAl in the Al/Ni diffusion couple are quantitatively determined. The cuboidal γ′ phase coherently precipitates cube-on-cube in γ-Ni(Al). Composition fluctuations existing in the supersaturated solid solution γ-Ni(Al), provide sufficient driving force for the precipitation and facilitate nucleation and growth of the γ′ phase under isothermal annealing.  相似文献   

6.
A bulk form of nanograined intermetallic Al3Ni was produced by severe plastic deformation using high-pressure torsion (HPT). Powder mixtures of 75?mol% Al and 25?mol% Ni were processed by HPT at a selected temperature in the range of room temperature (RT) to 573?K under a pressure of 6?GPa. X-ray diffraction analysis revealed that the Al3Ni intermetallic formed after processing for 50 revolutions at RT but, as the processing temperature increased, less revolutions (i.e. lower imposed strain) were required for the formation of Al3Ni. Observations by transmission electron microscopy showed that the microstructure consists of ultrafine grains having a size of 300–2000?nm after 3 and 10 revolutions. Once the Al3Ni formed after a higher number of revolutions, equiaxed nanograins with a size of ~30?nm prevailed with a significant increase in hardness. The increase in hardness was more significant when processed at higher temperatures because of increasing the fraction of Al3Ni. It was shown that the solid-state formation of Al3Ni occurred due to enhanced diffusion (i.e. decreased activation energy for diffusion) through the presence of high density of lattice defects.  相似文献   

7.
合金元素Zr韧化不同计量比Ni3Al合金的微观机制   总被引:1,自引:0,他引:1       下载免费PDF全文
利用正电子湮没技术(PAT)测量了不同化学计量比二元Ni33Al合金及不同Zr含 量Ni33Al合金的正电子寿命谱,并估算了合金基体和晶界缺陷处的自由电子密度.结果表明,二元Ni7777Al2323合金的基体和缺陷态的自由电子密度都比二元 Ni7474Al2626合金的高. Ni33Al合金晶界缺陷处开空间大于Ni空位或Al空位的开空间,晶界缺 陷处的自 关键词: 3Al合金')" href="#">Ni33Al合金 微观机制 自由电子密度 韧化  相似文献   

8.
This study presents diffusion experiments of NiAl coupled with pure Ni (Ni/NiAl). The couple produces the Ni3Al-based intermetallic phase ( phase) as an intermediate layer at the interface during diffusion annealing. Analytical electron microscopy is used to examine microstructural features, crystallographic orientation and compositional variations across the interface. Interdiffusivities are measured from the compositional variations. It is shown that the growing behavior of the phase changes between higher and lower annealing temperatures. The growth kinetics of the phase is also discussed.  相似文献   

9.
The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ~10–1 mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti3Al intermetallic phase elongated along the joint line (average size of ~200 nm) was observed. The base material was separated from the joint area by a layer of up to ~2 μm thickness of nearly defect free α‐Ti and β‐Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
采用F S多体势对液态合金Al3Ni和Ni3Al在不同冷却速度下的微观结构及其转变机制进行了分子动力学模拟 ,得到了不同冷速下各温度的双体分布函数 ;采用HA键型指数法对其结构进行了分析 ,结果表明 :Al3Ni在两种冷速下均以非晶的形式出现 ,只是慢冷时体系的有序度略有升高 ;而Ni3Al的结构及能量转变受冷速影响较大 ,快冷时形成非晶 ,而慢冷时出现明显结晶 ;同样冷速下Al含量较少的Ni3Al体系的有序度高 ,更易形成晶体 ,晶体的形成过程中有能量突变 .  相似文献   

11.
A Ni3Al coating was prepared by plasma spraying technique on the surface of titanium alloy. Ni-Al mixed powders, coatings and reaction products were investigated by scanning electron microscope, EDS, DSC and XRD. A tight bonding between the coating and the substrate was formed. The X-ray diffraction analysis of the patterns showed that the coating not only had Ni3Al phase, but also had NiO and Al2O3 phase microcontent. Comparing Ni coated Al to Ni3Al at 900 °C, the diffusion was stronger and the diffusion layer was thicker. A minute pore structure was formed at 1200 °C in the front edge of solid-state reaction layer. So Ni3Al restrained the solid-state reaction of the coating with the substrate, and as a whole weakened the entry of oxygen atoms into the substrate and quenched the out-diffusion of titanium.  相似文献   

12.
The corrosion behavior of the intermetallic compounds homogenized, Ni3(Si,Ti) (L12: single phase) and Ni3(Si,Ti) + 2Mo (L12 and (L12 + Niss) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EPMA: electron probe microanalysis) in 0.5 kmol/m3 H2SO4 and 0.5 kmol/m3 HCl solutions at 303 K. In addition, the corrosion behavior of a solution annealed austenitic stainless steel type 304 was studied under the same experimental conditions as a reference. It was found that the intergranular attack was observed for Ni3(Si,Ti) at an initial stage of the immersion test, but not Ni3(Si,Ti) + 2Mo, while Ni3(Si,Ti) + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss) mixture region. From the immersion test and polarization curves, Ni3(Si,Ti) + 2Mo showed the lowest corrosion resistance in both solutions and Ni3(Si,Ti) had the highest corrosion resistance in the HCl solution, but not in the H2SO4 solution. For instance, it was found that unlike type 304 stainless steel, these intermetallic compounds were difficult to form a stable passive film in the H2SO4 solution. The results obtained were explained in terms of boron segregation at grain boundaries, Mo enrichment and film stability (or strength).  相似文献   

13.
The crystal structure of the minor phase, named superstructure II, existing in multiferroic compound BiMnO3 has been studied by electron diffraction and high-resolution transmission electron microscopy. Domains of major and minor phases coexisting in BiMnO3 were observed in high-resolution electron microscope images. The unit cell of minor phase was determined to be triclinic with the size 4×4×4 times as large as the distorted perovskite subcell. The [111] and [101] projected structure maps of the minor phase have been derived from the corresponding images by means of the image processing. A possible rough three-dimensional (3D) structure model was proposed based on the 3D structural information extracted from the two projected structure maps. Since there is no inversion centre in the proposed model, the minor phase may contribute to the ferroelectric property of BiMnO3.  相似文献   

14.
王云江  王崇愚 《中国物理 B》2009,18(10):4339-4348
A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ′+2γ to 10γ′+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer’s thickness. A Ni/Ni3Al multilayer with 10γ′+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young’s modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ′ phase volume fraction are calculated by varying the proportion of the γ and γ′ phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.  相似文献   

15.
采用基于密度泛函理论和广义梯度近似的第一原理方法,探究了Ru元素和Re元素在Ni3Al中的相互作用及其对力学性质的影响.计算表明:在绝大多数化学计量比范围内,Ru原子优先占据Ni3Al中的Ni位,Re原子优先占据Ni3Al中的Al位,Ru和Re易于聚集分布,占据近邻的Ni-Al原子对.通过差分电荷密度图和态密度图分析得到Ru和Re掺杂会与近邻Ni原子产生轨道相互作用,Ru和Re之间也会产生轨道相互作用.通过计算弹性模量,应用经验判据得到Ru的加入使得Ni3Al材料抗压缩能力和韧性明显增强,但硬度有所降低.而Ru、Re的同时加入使其抗压缩能力、韧性和硬度都有所增强.  相似文献   

16.
Eutectics are the materials with foreseen application in the field of photonic crystals and metamaterials. In this paper, the dependence on chemical composition of the microstructures of terbium-scandium-aluminium gamet and terbium-scandium perovskite (Tb3Sc2Al3O12-TbScO3) eutectics has been studied. The growth of the eutectic rods by the micro-pulling down method is presented, using compositions with several different volume fractions of the garnet and the perovskite phases, VTSAG:VTSP = 4, 3, 2, 1, 1/2. The phases have been characterized by powder X-ray diffraction and energy dispersive spectrometry. The relationship between the lattice constant of individual phases and the chemical composition is presented. The unidirectional growth of microrods has been also investigated by electron backscattering diffraction.  相似文献   

17.
The optical absorption spectra (d-d transition bands) and covalent effect of Ni2+ ions in octahedral sites of Ca3Sc2Ge3O12 crystal have been investigated by the full energy matrix based on the two spin–orbit coupling parameters model. The bond length of octahedral site is Ri?=?2.19 Å, which can be determined by the cubic crystal-field parameter and optical spectral data. The lattice distortion of the Ni2+ center in Ca3Sc2Ge3O12 crystal is also obtained from the calculations. In addition, the result has shown that the covalent effect of Ni2+ ion in the octahedral site of Ga3Sc2Ge3O12 is obvious and cannot be ignored. The calculated d-d transition bands agree well with that of the experimental findings, suggesting that the present methods can explain reasonably the optical spectral data and covalent effect of 3d8 ions in octahedral lattices.  相似文献   

18.
In order to study the structural relaxation of the Zr60Al15Ni25 amorphous ribbon, the electrical resistivity was experimentally investigated. The changes in the resistivity before glass transition temperature were observed. Two temperature points (423?K and 573?K) were chosen for cyclic heating experiments. The results showed that both irreversibility and reversibility of structural changes existed in amorphous alloys, which were related to the selected temperature and cycle times. Based on the scattering mechanism of electron conduction in metal, the structural defects model was used to explain the changes of electrical resistivity. The sample was in a highly disorder state after experienced thermal cycling of high temperature (573?K). The number and kind of atoms may be changed to increase the crystallisation range.  相似文献   

19.
Adsorption of CO molecules and Pb atoms on the Ni(1 1 1) and Ni3Al(1 1 1) substrates is studied theoretically within an ab initio density-functional-theory approach. Stable adsorption sites and the corresponding adsorption energies are first determined for stoichiometric surfaces. The three-fold hollow sites (fcc for Pb and hcp for CO) are found most favourable on both substrates. Next, the effect of surface alloying by a substitution of selected topmost substrate atoms by Pb or Ni atoms on the adsorption characteristics is investigated. When the surface Al atoms of the Ni3Al(1 1 1) substrate are replaced by Ni atoms, the Pb and CO adsorption energies approach those for a pure Ni(1 1 1) substrate. The Pb alloying has a more substantial effect. On the Ni3Al(1 1 1) substrate, it reduces considerably adsorption energy of CO. On the Ni(1 1 1) substrate, CO binding strengthens slightly upon the formation of the Ni(1 1 1)p(2×2)-Pb surface alloy, whereas it weakens drastically when the Ni(1 1 1)-Pb surface alloy is formed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号