首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When conducting 13CO2 plant–soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ13C measurements of soil respiration (δ13CSR) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, 13CO2 is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix 13CO2 contamination and canopy recycling on soil 13CO2 efflux during 13CO2 plant–soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of 13C tracer into the soil chamber during a 13CO2 canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO2 isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ13C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, 13CO2 was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ13CSR fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ13CSR decay of physical 13CO2 back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ13CSR of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy, revealed that 13CO2 recycling at canopy level had no effect on δ13CSR dynamics.  相似文献   

2.
Temperate ecosystems are susceptible to drought events. The effect of a severe drought (104 days) followed by irrigation on the plant C uptake, its assimilation and input of C in soil were examined using a triple 13CO2 pulse-chase labelling experiment in model grassland and heathland ecosystems. First 13CO2 pulse at day 0 of the experiment revealed much higher 13C tracer uptake for shoots, roots and soil compared to the second pulse (day 44), where all plants showed significantly lower 13C tracer uptake. After the third 13CO2 pulse (day 70), very low 13C uptake in shoots led to a negligible allocation of 13C into roots and soil. During irrigation after the severe drought, the 13C tracer that was allocated in plant tissues during the second and third pulse labelling was re-allocated in roots and soil, as soon as the irrigation started. This re-allocation was higher and longer lasting in heathland compared to grassland ecosystems.  相似文献   

3.
As urban atmosphere is depleted of 13CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ13C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ13CO2 signatures.  相似文献   

4.
We present a nondispersive infrared spectrometer (NDIRS) for the measurement of the 13CO2/12CO2-ratio in breath samples. A commercial NDIR spectrometer for CO2 concentration measurements in industrial process control was modified using two separate optical channels for the 13CO2 and 12CO2 detection. Cross interference due to overlapping absorption lines of both isotopic gases was successfully eliminated. The sensitivity of this device is ± 0.4‰ of the 13CO2/12CO2-ratio in a range of 2.5 to 5% of total CO2. This is sufficient for biomedical applications. Our spectrometer is small in size, cheap and simple to operate and thus a true alternative to isotope ratio mass spectrometers (IRMS). Several biomedical applications with breath samples were demonstrated and were compared in very good agreement with IRMS.  相似文献   

5.
Measurement of soil-respired CO2 at high temporal resolution and sample density is necessary to accurately identify sources and quantify effluxes of soil-respired CO2. A portable sampling device for the analysis of δ13C values in the field is described herein.

CO2 accumulated in a soil chamber was batch sampled sequentially in four gas bags and analysed by Wavelength-Scanned Cavity Ring-down Spectrometry (WS-CRDS). A Keeling plot (1/[CO2] versus δ13C) was used to derive δ13C values of soil-respired CO2. Calibration to the δ13C Vienna Peedee Belemnite scale was by analysis of cylinder CO2 and CO2 derived from dissolved carbonate standards. The performance of gas-bag analysis was compared to continuous analysis where the WS-CRDS analyser was connected directly to the soil chamber.

Although there are inherent difficulties in obtaining absolute accuracy data for δ13C values in soil-respired CO2, the similarity of δ13C values obtained for the same test soil with different analytical configurations indicated that an acceptable accuracy of the δ13C data were obtained by the WS-CRDS techniques presented here. Field testing of a variety of tropical soil/vegetation types, using the batch sampling technique yielded δ13C values for soil-respired CO2 related to the dominance of either C3 (tree, δ13C=?27.8 to?31.9 ‰) or C4 (tropical grass, δ13C=?9.8 to?13.6 ‰) photosynthetic pathways in vegetation at the sampling sites. Standard errors of the Keeling plot intercept δ13C values of soil-respired CO2 were typically<0.4 ‰ for analysis of soils with high CO2 efflux (>7–9 μmol m?2 s?1).  相似文献   

6.
A newly developed isotope selective nondispersive infrared (NDIR) spectrometer for the measurement of 13CO2 and 12CO2 concentrations in breath samples was applied as a low cost and very simple to operate alternative to isotope ratio mass spectrometry (IRMS). We used this device for several biomedical applications ([13C]urea breath test, [13C]leucine metabolism, [13C]methacetin catabolism of rats) and found that the results agree very well with IRMS.  相似文献   

7.
The aim of this study was to investigate the hepatic microsomal and mitochondrial functions by using the 13CO2-breath test in healthy subjects either before or after the consumption of red wine. Fourteen adults received [13C]methacetin and [methyl-13C]methionine together with a standardised dinner. Expired air samples were taken over 6 h. After a wash-out period, the subjects consumed 0.4 ml ethanol/kg/day together with dinner over a 10-day period. Thereafter, 13C-tracer administration was repeated under identical conditions. The 13CO2-enrichments were measured by isotope ratio mass spectrometry. The mean cumulative percentage 13C-dose recovery (CPDR) after administration of [13C]methacetin and [methyl-13C]methionine either without or with red wine consumption amounted to 38.2±6.3 vs. 36.3±6.7% (p=0.363) and 9.5±3.3 vs. 8.8±2.5% (p=0.47), respectively. Moderate alcohol consumption does not induce significant short-term changes of the microsomal and the mitochondrial functions of the human liver in healthy subjects.  相似文献   

8.
The aim of this study is to determine if age is a factor influencing the results of a [13C]methacetin breath test (13C-MBT). Two groups of healthy volunteers, each comprising six men and six women, but differing in average age (Y=young, 25.1±0.6 years, MA=middle-aged;, 46.0±2.1 years) orally took 75 mg [13C]methacetin. Samples of expiratory air for 13CO2 measurement were collected up to 48 h after intake of the substrate. A maximum momentary 13CO2 breath exhalation of 37.0±2.6%dose/h was observed at 18 min (median, range: 9–30 min) in the young subjects and of 38.4±2.5%dose/h at 18 min (median, range: 12–30 min) in the middle-age volunteers. The cumulative 13C elimination in expiratory air was statistically significantly higher in the MA compared with the Y group as from 75 min up to 180 min, indicating a greater microsomal metabolic efficiency of the liver in the middle-aged healthy subjects. Gender, use of hormonal contraception, cigarette smoking, or body mass index did not modify the age-related effect on the cumulative 13C elimination in breath air. The study results imply a necessity of composing control groups well matched with regard to the age structure for a proper interpretation of clinical 13C-MBT results.  相似文献   

9.
The usefulness of different ways of water removal in off-line sample preparation of human breath samples for 13CO2 breath tests was examined and compared. Cryogenic water trapping and water removal with common desiccants like silicagel blue, Mg(ClO4)2, and molecular sieves were checked for reliability and reproducibility. With silicagel blue and Mg(ClO4)2 memory effects for 13C content were observed. The use of molecular sieve 4 Å and 5 Å led to tremendous carbon isotope fractionation. Molecular sieve 3 Å was found to be an excellent alternative to the established use of Mg(ClO4)2 and of cryogenic water trapping.  相似文献   

10.
We reconsider the principle of the 13C bicarbonate (NaH13CO3) method (13C-BM) for the determination of the CO2 production to obtain an estimate of energy expenditure (EE). Its mathematical concept based on a three-compartmental model is related to the [15N]glycine end product method. The CO2 production calculated by the 13C-BM, RaCO2(13C) is compared to the result from the indirect calorimetry, RCO2(IC). In an interspecies comparison (dog, goat, horse, cattle, children, adult human; body mass ranging from 15 to 350?kg, resting and fasting conditions) we found an excellent correlation between the results of 13C-BM and IC with RCO2(IC)?=?0.703?×?RaCO2(13C), (R2?=?0.99). The slope of this correlation corresponds to the fractional 13C recovery (RF(13C)) of 13C in breath CO2 after administration of NaH13CO3. Significant increase in RF(13C) was found in physically active dogs (0.95?±?0.14; n?=?5) vs. resting dogs (0.71?±?0.10, n?=?17; p?=?.015). The 13C recovery in young bulls was greater in blood CO2 (0.81?±?0.05) vs. breath CO2 (0.73?±?0.05, n?=?12, p?<?.001) and in ponies with oral (0.76?±?0.03, n?=?8) vs. intravenous administration of NaH13CO3 (0.69?±?0.07; n?=?8; p?=?.026). We suggest considering the 13C-BM as a ‘stand-alone’ method to provide information on the total CO2 production as an index of EE.  相似文献   

11.
When conducting (13)CO(2) plant-soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ(13)C measurements of soil respiration (δ(13)C(SR)) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, (13)CO(2) is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix (13)CO(2) contamination and canopy recycling on soil (13)CO(2) efflux during (13)CO(2) plant-soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of (13)C tracer into the soil chamber during a (13)CO(2) canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO(2) isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ(13)C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, (13)CO(2) was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ(13)C(SR) fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ(13)C(SR) decay of physical (13)CO(2) back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ(13)C(SR) of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy, revealed that (13)CO(2) recycling at canopy level had no effect on δ(13)C(SR) dynamics.  相似文献   

12.
Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO2 and water vapour were observed. The isotope ratios of both CO2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ13C–CO2 and δ18O–CO2 increased, while δ2H–H2Ov and δ18O–H2Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO2 and H2Ov could be used as a tracer of meteorological information.  相似文献   

13.
Soil from Free-Air Carbon dioxide Enrichment (FACE) plots (FAL, Braunschweig) under ambient air (375 ppm; δ13C–CO2?9.8‰) and elevated CO2 (550 ppm; for six years; δ13C–CO2?23‰), either under 100% nitrogen (N) (180 kg ha?1) or 50% N (90 kg ha?1) fertilisation treatments, was analysed by thermogravimetry. Soil samples were heated up to the respective temperatures and the remaining soil was analysed for δ13C and δ15N by Isotope Ratio Mass Spectrometry (IRMS). Based on differential weight losses, four temperature intervals were distinguished. Weight losses in the temperature range 20–200 °C were connected mostly with water volatilisation. The maximum weight losses and carbon (C) content were measured in the soil organic matter (SOM) pool decomposed at 200–360 °C. The largest amount of N was detected in SOM pools decomposed at 200–360 °C and 360–500 °C. In all temperature ranges, the δ13C values of SOM pools were significantly more negative under elevated CO2 versus ambient CO2. The incorporation of new C into SOM pools was not inversely proportional to its thermal stability. 50% N fertilisation treatment gained higher C exchange under elevated CO2 in the thermally labile SOM pool (200–360 °C), whereas 100% N treatment induced higher C turnover in the thermally stable SOM pools (360–500 °C, 500–1000 °C). Mean Residence Time of SOM under 100% N and 50% N fertilisation showed no dependence between SOM pools isolated by increasing temperature of heating and the renovation of organic C in those SOM pools. Thus, the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C.  相似文献   

14.
We conducted continuous, high time-resolution measurements of CO2 and water vapour isotopologues (16O12C16O, 16O13C16O and 18O12C16O for CO2, and H218O for water vapour) in a red pine forest at the foot of Mt. Fuji for 9 days from the end of July 2010 using in situ absorption laser spectroscopy. The δ18O values in water vapour were estimated using the δ2H–δ18O relationship. At a scale of several days, the temporal variations in δ18O-CO2 and δ18O-H2O are similar. The orders of the daily Keeling plots are almost identical. A possible reason for the similar behaviour of δ18O-CO2 and δ18O-H2O is considered to be that the air masses with different water vapour isotopic ratios moved into the forest, and changed the atmosphere of the forest. A significant correlation was observed between δ18O-CO2 and δ13C-CO2 values at nighttime (r2≈0.9) due to mixing between soil (and/or leaf) respiration and tropospheric CO2. The ratios of the discrimination coefficients (Δa/Δ) for oxygen (Δa) and carbon (Δ) isotopes during photosynthesis were estimated in the range of 0.7–1.2 from the daytime correlations between δ18O-CO2 and δ13C-CO2 values.  相似文献   

15.
Nitrous oxide is an important greenhouse gas and its origin and fate are thus of broad interest. Most studies on emissions of nitrous oxide from soils focused on fluxes between soil and atmosphere and hence represent an integration of physical and biological processes at different depths of a soil profile. Analysis of N2O concentration and isotope signature along soil profiles was suggested to improve the localisation of sources and sinks in soils as well as underlying processes and could therefore extend our knowledge on processes affecting surface N2O fluxes. Such a mechanistic understanding would be desirable to improve N2O mitigation strategies and global N2O budgets. To investigate N2O dynamics within soil profiles of two contrasting (semi)natural ecosystem types (a temperate acidic fen and a Norway spruce forest), soil gas samplers were constructed to meet the different requirements of a water-saturated and an unsaturated soil, respectively. The samplers were installed in three replicates and allowed soil gas sampling from six different soil depths. We analysed soil air for N2O concentration and isotope composition and calculated N2O net turnover using a mass balance approach and considering diffusive fluxes. At the fen site, N2O was mainly produced in 30–50 cm soil depth. Diffusion to adjacent layers above and below indicated N2O consumption. Values of δ15N and δ18O of N2O in the fen soil were always linearly correlated and their qualitative changes within the profile corresponded with the calculated turnover processes, suggesting further reduction of N2O. In the spruce forest, highest N2O production occurred in the topsoil, but there was also notable production occurring in the subsoil at a depth of 70 cm. Changes in N2O isotope composition as to be expected from local production and consumption processes within the soil profile did hardly occur, though. This was presumably caused by high diffusive fluxes and comparatively low net turnover, as isotope signatures approached values measured for ambient N2O towards the topsoil. Our results demonstrate a highly variable influence of diffusive versus production/consumption processes on N2O concentration and isotope composition, depending on the type of ecosystem. This finding indicates the necessity of further N2O concentration and isotope profile investigations in different types of natural and anthropogenic ecosystems in order to generalise our mechanistic understanding of N2O exchange between soil and atmosphere.  相似文献   

16.
We report on the application of a compact and field-deployable instrument, based on a continuous-wave fiber-coupled Telecom external cavity diode laser, to measure the 13C/12C isotope ratio in CO2 from a wood-based combustion. Carbon dioxide, the most important greenhouse gas, is a major product of combustion. The measurements of the 13C/12C isotopic ratio in CO2 from combustion emission permit one to identify the CO2 source and to study the temporal and spatial variations of pollution in the atmosphere. The average value of the 13CO2/12CO2 ratio is found to be (1.1011±0.0024)%. The corresponding δ-value relative to PDB standard is (−20.17±2.14)‰, which is in good agreement with the typical value of (−25±2)‰ for wood. Simultaneous monitoring of multiple species from gas emission has been performed using direct-absorption spectroscopy. The concentrations of C2H2, CO, CO2 and H2O were determined on the basis of integrated absorbance measured by least-squares fitting a Voigt lineshape to experimental absorption spectra.  相似文献   

17.
A computer-aided optoacoustic gas analyzer based on a continuous13C16C2 laser for multicomponent pollution of atmospheric air is described. The analyzer has the ability to detect absorption of radiation by detected substances at the level of ∼1·10−9 cm−1 at a time resolution of 30 sec. Results of an experiment on simultaneous detection of H2O, CO2, NO2, NH3, HNO3, OCS, and C2H4 in the atmospheric air using 40 laser lines are presented. B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 3, pp. 345–350, May–June, 1999.  相似文献   

18.
Stable (i.e. non-radioactive) carbon-isotope composition (δ13C) in fuels has been extensively used as an indicator of the processes leading to the generation of their parent crude-oil. With the example of those used in Paris (France), this preliminary study isotopically characterizes fuels and combustibles, as well as the isotopic relations existing with their combustion by-products, i.e. gases (CO2) and particles (bulk carbon). Results show that δ13C in fuels is clearly related to their physical state, with natural gas being strongly depleted in 13C while coal yields the highest δ13C, and liquid fuels display intermediate values. This relation is also valid for combustion gases, although δ13C values of combustion particles form a homogeneous range within which no clear distinction is observed. Combustion processes are accompanied by carbon-isotope fractionation (noted Δ13C) resulting from the combustion being incomplete. Carbon-isotope fractionation is strictly negative (Δ13C = ?1.3‰) during the formation of combustion gases, but generally positive in particle formation even if values close to zero are observed. Using simple mixing equations for describing the closed system formed by fuel, CO2 and carbonaceous particles, we discuss the carbon budget for spark-ignition (unleaded gasoline) and diesel engines. Stable carbon isotopes corroborate the already-proved superior efficiency of diesel combustion mode compared with spark ignition, as carbon is preferentially transformed into CO2.  相似文献   

19.
Abstract

Carbon and nitrogen stable isotope compositions of organic matter, TOC/TN ratio, and manganese concentration in a sediment core that was collected in northern part of Lake Baikal (VER92ST10-GC2, water depth at 922 m, about 3 m long) were investigated to elucidate the origin of the sedimentary organic matter and its associated environmental factors.

The sediment core was composed of mainly two parts: turbidite sections and other sections. Constant δ13C and δ15N values of the turbidite sections were observed (- 26.8 ±0.2 ‰ for δ13C and 3.2 ± 0.1 ‰ for δ15N) throughout the core. The higher δ13C in turbidite sections (about - 27 ‰) than that of the other sections (- 31 to - 29 ‰) was clearly observed, and δ15N was different between turbidite sections (about 3‰) and other sections (3 to 5 ‰). δ13C of other sections was close to that of pelagic phytoplankton, indicating that sediment other than turbidite sections is composed of autochthonous components. The variation of stable isotopes in other sections may be possibly caused by the changes in either phytoplankton growth rate or contribution ratios of terrestrial to aquatic plants for δ13C. Either denitrification or fluctuation of δ15N in pelagic phytoplankton can be the cause of variable δ15N in other sections.  相似文献   

20.
Generation of third harmonic of CO2 laser radiation has been obtained in a type-II, ϑ=57° cut 9 mm thick AgGaSe2 crystal for the first time by sum-frequency-mixing of the fundamental with its second harmonic, the latter being obtained using another type-I, ϑ=55° cut 11 mm thick AgGaSe2 crystal. The energy conversion efficiencies obtained for second harmonic and third harmonic generations are 6.3% and 2.4% respectively with the input fundamental pump power density of 5.9 MW/cm2 only. The wavelength of the fundamental CO2 laser radiation used for the generation of harmonics is 10.6 μm, P(20) line. A compact TEA CO2 laser source has been built in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号