首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The present study presents a thorough theoretical analysis of the electronic structure and conformational preference of Schiff’s base ligand N,N-bis(2-hydroxybenzilidene)-2,4,6-trimethyl benzene-1,3-diamine (H2L) and its metal complexes with Zn2+, Cu2+ and Ag+ ions. This study aims to investigate the behavior of H2L and the binuclear Zn2+ complex (1) as fluorescent probes for the detection of metal ions (Zn2+, Cu2+ and Ag+) using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The six conformers of the H2L ligand were optimized using the B3LYP/6–311?+??+?G** level of theory, while the L?2-metal complexes were optimized by applying the B3LYP functional with the LANL2DZ/6–311?+??+?G** mixed basis set. The gas-phase and solvated Enol-cis isomer (E-cis) was found to be the most stable species. The absorption spectra of the E-cis isomer and its metal complexes were simulated using B3LYP, CAM-B3LYP, M06-2X and ωB97X functionals with a 6–311?+??+?G** basis set for C, O, N and H atoms and a LANL2DZ basis set for the metal ions (Zn2+, Cu2+ and Ag+). The computational results of the B3LYP functional were in excellent agreement with the experimental results. Hence, it was adopted for performing the emission calculations. The results indicated that metal complex (1) can act as a fluorescent chemosensor for the detection of Ag+ and Cu2+ ions through the mechanism of intermolecular charge transfer (ICT) and as a molecular switch “On–Off-On” via the replacement of Cu2+ by Ag+ ions, as proved experimentally.

  相似文献   

2.
Cation–π interactions in alkali metal ion (Li+, Na+ and K+)–pillar[5]arene complexes and sandwiches of pillar[5]arene and benzene formed via alkali metal ions are studied in the light of density functional theory. Several possible modes of interaction between metal ions and pillar[5]arene have been studied. Results suggest that interaction is stronger in the complexes with the metal ion present inside the cavity of the pillar[5]arene as compared to that where the metal ion is outside the cavity. The calculated interaction energy further reveals that though cation–π complexes with larger number of alkali metal ions are unstable, however, corresponding sandwiches are stable, which further support the fact that pillar[5]arene–metal ion complexes can interact with other π–electron-rich species. Absorption spectra of the complexes formed undergo both blue and red shifts as compared to the pillar[5]arene.  相似文献   

3.
The present study compared the interactions among Na +, K +, Mg2+ and Ca2+, thymine and its tautomers in the gas and solvent phase, an interaction dependent upon the electronic construction of the tautomers. Three types of cation interaction with thymine and its tautomers were observed. In the first one, the metal cations interacted with a lone pair of nitrogen or oxygen of the tautomers. In the second type, there was an interaction among the cations, nitrogen and oxygen at the same time; the last one was that of cations with the electron density of thymine π-system, where the cations were perpendicular to the ring of thymine. The interaction of metals cation with tautomers was studied in the gas and solvent phases; a comparison was then made between interactions in two phases. The interaction energy for all complexes indicated the stability of complexes, an energy which was higher in Ca2+ and Mg2+ compared with Na+ and K+. Concerning K+ and Na+, the stability of all complexes of tautomers was greater than that of thymine complexes; however, the stability of certain Ca2+ and Mg2+ complexes was lower than the complexes of thymine.  相似文献   

4.
The coordination geometries, electronic features, metal ion affinities, entropies, and the energetics of Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cations with different possible conformations of cysteine complexes were studied. The complexes were optimized using density functional theory (B3LYP) and second order Moller–Plesset Perturbation (MP2) theory methods using 6‐311 + +G** basis set. The interactions of the metal cations at different nucleophilic sites of cysteine conformations were considered after a careful selection among several binding sites. All the metal cations coordinate with cysteine in a tridentate manner and also the most preferred position for the interaction. It is found that, the overall structural parameters of cysteine are not altered by metal ion substitution, but, the metal ion‐binding site has undergone a noticeable change. All the complexes were characterized by an electrostatic interaction between ligand and metal ions that appears slightly more pronounced for lithium and beryllium metal complexes. The metal ion affinity (MIA) and basis set superposition error (BSSE) corrected interaction energy were also computed for all the complexes. The effect of metal cations on the infrared (IR) stretching vibrational modes of amino N? H bond, side chain thiol group S? H bond, hydroxyl O? H bond, and Carbonyl C?O bond in cysteine molecules have also been studied. The nature of the metal ion‐ligand bond and the coordination properties were examined using natural bond order (NBO) at bond critical point (electron density and their Laplacian of electron density) through Atoms in Molecules (AIM) analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Three derivatives of alkyl anthracene covalently bonded to aza‐18‐crown‐6 at the nitrogen position, anthracene(CH2)n, (n = 1–3) which act as an on–off fluorogenic photoswitch have been theoretically studied using a computational strategy based on density functional theory at B3LYP/6‐31 + G(d,p) method. The fully optimized geometries have been performed with real frequencies which indicate the minima states. The binding energies, enthalpies and Gibbs free energies have been calculated for aza‐18‐crown‐6 ( L ) and their metal complexes. The natural bond orbital analysis is used to explore the interaction of host–guest molecules. The absorption spectra differences between L and their metal ligands, the excitation energies and absorption wavelength for their excited states have been studied by time‐dependent density functional theory with the basis set 6‐31 + G(d,p). These fluorescent sensors and switchers based on photoinduced electron transfer mechanism have been investigated. The PET process from aza‐crown ether to fluorophore can be suppressed or completely blocked by the entry of alkali metal cations into the aza‐crown ether‐based receptor. Such a suppression of the PET process means that fluorescence intensity is enhanced. The binding selectivity studies of the aza‐crown ether part of L indicate that the presence of the alkali metal cations Li+, Na+ and K+ play an important role in determining the internal charge transfer and the fluorescence properties of the complexes. In addition, the solvent effect has been investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag+ cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag+ cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, −5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag+(CO)2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag+ ion at 2211 cm−1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag+(CO)2 complex shift to 2231 cm−1 and 2205 cm−1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H2O complex shifts to 2199 cm−1, the symmetric and antisymmetric O-H stretching frequencies are 3390 cm−1 and 3869 cm−1, respectively. The Gibbs free energy change (ΔGH2O) is −6.58 kcal/mol as a H2O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H2O complex is more stable at room temperature.  相似文献   

7.
Quantum chemical calculations have been performed to investigate the interplay between the cation–π interaction and lithium bonding in the M+?···?phenyl lithium?···?OH2 and M+?···?phenyl lithium?···?NH3 (M?=?Li, Na, K) complexes. The cation–π interaction and lithium bonding in the trimers become stronger relative to the dimers. The interaction energy of cation–π interaction is increased by about 4.4–6.3%, while that of lithium bonding is increased by about 5.2–15.9%. The cooperative energy becomes larger for the stronger cation–π interaction and lithium bond. The F atom and methyl group in the phenyl ring impose a reverse effect on the cation–π interaction and lithium bond. The interaction mechanism in the complexes has been understood with the many-body interaction analysis, electrostatic potentials, and energy decomposition.  相似文献   

8.
A novel fluorescent switchable chemosensor 1 , which is composed of an anthracene‐modified calix[4]crown in the 1,3‐alternate conformation, was calculated by density functional theory and time‐dependent density functional theory method. Geometries, molecular orbitals and binding thermal energies were evaluated at the restricted hybrid Becke's three‐parameter exchange functional using 6‐31 G(d) basis set and relativistic effective core potentials. The metal–ligand and cation–π interactions were investigated acting as two main types of driving force. Our calculations clearly show that solvent effects strongly influence cation selectivity, and K+ selectivity is recovered when even a few waters of hydration are considered. The calculations indicate that because of the photoinduced electron transfer effect, the addition of alkali metal ions have hardly any effect on the fluorescence of ligand 1 under neutral or basic conditions. Also, the high selectivity of ligand 1 for K+ and Rb+, under acidic conditions, the complexed metal ion can result in ammonium ion deprotonation, which leads to quenching of fluorescence of 1 ?H+. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The binding interactions of bis‐3‐benzo‐15‐crown‐5 ethers and bis‐3‐benzo‐18‐crown‐6 ethers (neutral hosts) with a series of alkali metal cations Na+, K+, Rb+ and Cs+ (charged guests) were investigated using quantum chemical density functional theory. Different optimized structures, binding energies and various thermodynamic parameters of free crown ethers and their metal cation complexes were obtained based on the Becke, three‐parameter, Lee–Yang–Parr functional using mixed basis set (C, H, O, Na+ and K+ using 6‐31 g, and the heavier cation Rb+ and Cs+ using effective core potentials). Natural bond orbital analysis is conducted on the optimized geometric structures. The main types of driving force host–guest interactions are investigated. The electron donating O offers a lone pair of electrons to the contacting LP* (1‐center valence antibond lone pair) orbitals of metal cations. The bis‐3‐benzocrown ethers are assumed to have sandwich‐like conformations, considering the binding energies to gauge the exact interactions with alkali cations. It is found that there are two different types of complexes: one is a tight ion pair and the other is a separated ion pair. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In the present study, H-Mg-H···X···Y (X = Li+, Na+ and Y = C2H2, C2H4, C6H6) triads have been investigated at MP2/6-311++G(2d,2p) computational level to characterise cooperative effects between hydride bonding and cation–π interactions. Molecular geometries, binding energies, cooperative energies and many-body interaction energies were evaluated. The diminutive energy values in triads with Li+ are larger than respective values in triads with Na+. The electronic properties of the complexes are analysed using parameters derived from the quantum theory of atoms in molecules methodology.  相似文献   

11.
In the process of investigating the interaction of fullerene projectiles with adsorbed organic layers, we measured the kinetic energy distributions (KEDs) of fragment and parent ions sputtered from an overlayer of polystyrene (PS) oligomers cast on silver under 15 keV C60+ bombardment. These measurements have been conducted using our TRIFT™ spectrometer, recently equipped with the C60+ source developed by Ionoptika, Ltd. For atomic ions, the intensity corresponding to the high energy tail decreases in the following order: C+(E−0.4) > H+(E−1.5) > Ag+(E−3.5). In particular, the distribution of Ag+ is not broader than those of Ag2+ and Ag3+ clusters, in sharp contrast with 15 keV Ga+ bombardment. On the other hand, molecular ions (fragments and parent-like species) exhibit a significantly wider distribution using C60+ instead of Ga+ as primary ions. For instance, the KED of Ag-cationized PS oligomers resembles that of Ag+ and Agn+ clusters. A specific feature of fullerene projectiles is that they induce the direct desorption of positively charged oligomers, without the need of a cationizing metal atom. The energy spectrum of these PS+ ions is significantly narrower then that of Ag-cationized oligomers. For characteristic fragments of PS, such as C7H7+ and C15H13+ and polycyclic fragments, such as C9H7+ and C14H10+, the high energy decay is steep (E−4 − E−8). In addition, reorganized ions generally show more pronounced high energy tails than characteristic ions, similar to the case of monoatomic ion bombardment. This observation is consistent with the higher excitation energy needed for their formation. Finally, the fraction of hydrocarbon ions formed in the gas phase via unimolecular dissociation of larger species is slightly larger with gallium than with fullerene projectiles.  相似文献   

12.
Electronic structures of Li+ ion-ethylene carbonate (EC) complexes were studied by density functional theory. The structural, electronic and dynamical properties of Li+-EC complexes were studied for both an isolated EC molecule and clusters including Li+ ion. Our structural analysis showed only one type of Li+ coordination with EC through Li+?OC which was supported by the vibration spectral analysis for interaction between Li+ ion and a solvent (EC) molecule. It was analyzed that the solvation energy and Mulliken charge of Li+ ion solvated by EC molecule decrease with increase in number of EC molecule. However, electron affinity shows the opposite change. This analysis with solvation energy, electron affinity and Mulliken charge supported the stabilization of 4-coordinated solvation shell among [Li+(EC)n]n=1-5 complexes.  相似文献   

13.
Vibrational spectra of mass-selected Ag+(H2O)n ions are measured by infrared photodissociation spectroscopy and analyzed with the aid of density functional theory calculations. Hydrogen bonding between H2O molecules is found to be absent for cold Ag+(H2O)3, but detected for Ag+(H2O)4 through characteristic changes in the position and intensity of OH-stretching transitions. The third H2O coordinates directly to Ag+, but the fourth H2O prefers solvation through hydrogen bonding. The preference of the tri-coordinated form is attributed to the inefficient 5s–4d hybridization in Ag+, in contrast to the efficient 4s–3d hybridization in Cu+. For Ag+(H2O)4, however, di-coordinated isomers are identified in addition to the tri-coordinated one.  相似文献   

14.
The bonding features and electronic structures of a series of transition metal carbon dioxide complexes have been studied by density functional theory (DFT) calculations combined with natural bond orbital (NBO) analysis and energy-decomposition analysis (EDA). NBO analysis shows that the interaction between the metal center and the carbon atom of the carbon dioxide ligand (M–C) is stronger than the other interaction between the metal center and the carbon dioxide ligand. Natural hybrid orbital (NHO) analysis gives the detailed bonding features of the M–C bond for each complex. The NBO charge distribution on the carbon dioxide unit in all studied complexes is negative, which indicates charge transfer from the metal center to the carbon dioxide ligand for all studied complexes. The hyperconjugation effect of the metal center and the two C–O bonds of the carbon dioxide ligand has been estimated using the NBO second-order perturbation stabilization energy. It was found that the NBO second-order stabilization energy of C–O?→?nM* is sensitive to the coordinated sphere and the metal center. Frontier molecular orbital (FMO) analysis shows that complexes 1 and 4 may be good nucleophilic reagents for activation of the carbon dioxide molecule. However, the EDAs show that the M–CO2 bond interaction energy of complex 4 is about two times as large as that of complex 1. The high M–CO2 bond interaction energy of complex 4 may limit its practical application.  相似文献   

15.
Binding of Mg2+, Ca2+, Zn2+, and Cu+ metal ions with 2′‐deoxythymidine (dT) nucleoside was studied using a density functional theory method and a 6‐311++G(d,p) basis set. This work demonstrated that the interaction of dT with these cations is tri‐coordinated η (O2, O4′, O5′). Among the four types of cations, Zn2+ cation exhibited the most tendency to interact with the dT. Cations via their interaction with dT can affect the N‐glycosidic bond length, the values of pseudorotation of the sugar ring, the orientation of the base unit with respect to the sugar ring, and the acidity of the O5′H, O3′H, and N3H groups in the dT nucleoside. Natural bond orbital analysis was performed to calculate the charge transfer and natural population analysis of the complexes. Quantum theory of atoms in molecules was also applied to determine the nature of interactions. It was shown that in dT–Mg2+ and dT–Ca2+ complexes, the bonds are electrostatic (closed‐shell) interactions, although they are partially covalent and partially electrostatic interactions in dT–Zn2+ and dT–Cu+ complexes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
To model the adsorption of Au+ cation in aqueous solution on the semiconductor surface, the interactions of Au+ and hydrated Au+ cations with clean Si(1 1 1) surface were investigated by using hybrid density functional theory (B3LYP) and Møller-Plesset second-order perturbation (MP2) methods. Si(1 1 1) surface was described with Si7H11, Si11H17 and Si22H21 clusters. The effect of the basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Au+ cations and clean Si(1 1 1) surface are large, suggesting a strong interaction between hydrated Au+ cations and the semiconductor surface. The bonding nature of the chemical adsorption of Au+ to Si surface can be classified as partial covalent as well as ionic bonding. As the number of water molecules increases, the water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Au+ cation. The Au+ cation in aqueous solution will safely attach to the clean Si(1 1 1) surface.  相似文献   

17.
The optical absorption and EPR spectra of Ni2+-VAg centres in the AgCl:Ni2+ and AgBr:Ni2+ systems have been investigated theoretically on the basis of the complete energy matrices including the electron–electron repulsion interaction, the ligand field interaction, the spin–orbit coupling interaction, and Zeeman interaction. Because the charge compensation forms a silver ion vacancy (VAg) which makes the attractive force acted on the each ligand ion different, it was determined that the Ni–X (X = Cl, Br) distance next to VAg is shorter than others for both AgCl:Ni2+ and AgBr:Ni2+ systems in the tetragonal symmetry. Besides, it was found that the local lattice structure of (NiX6)4? clusters in AgCl and AgBr crystals exhibit a compression distortion. This compression distortion may be ascribed to the fact that the Ni2+ ion has a smaller ionic radius and more effective charge than the Ag+ ion.  相似文献   

18.
The diffusion of Cs+ tracer in AgCl has been measured in the temperature range 327–447°C. The unexpectedly small activation energy of 0.83 eV and tracer diffusivities larger than those of substitutional Ag+ have been interpreted in terms of local strain in the lattice, caused by the large radius of cesium, with a concomitant strong binding of a cation vacancy.  相似文献   

19.
ABSTRACT

Interactions of cycloheptatriene derivatives, C7H6X, (X?=?NH, PH, AsH, O, S, Se) with the cations H+, CH3+, Cu+, Al+, Li+, Na+, and K+ are studied using B3LYP functional and 6-311++G(d,p) basis set. The calculated gas-phase cation affinities (CA) and cation basicities (CB) for all molecules decrease as H+ > CH3+ > Cu+ > Al+ > Li+ > Na+ > K+. We used the induced aromaticity in the 7-membered ring of C7H6X upon interaction with the cations, M+, as a measure of C7H6X/M+ interaction. Nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) were used as two indices of aromaticity. The highest and lowest induced aromaticities were observed for interactions of H+ and K+, respectively. Also, the aromaticity induced by interaction with a cation in C7H6AsH and C7H6PH was larger than that in C7H6NH and C7H6O. Hence, the aromaticity was considered as a measure of covalency for the C7H6X/M+ interactions showing a rational dependence on both the molecule and cation. The nature of the interactions was also assessed using electron density, charge distribution analysis and NBO calculations. The results of the aromaticity indices, NICS and HOMA, were compared with the electron density and NBO results.  相似文献   

20.

The aqueous solutions of different stability containing silver sulfide (Ag2S) nanoparticles are studied. The stable, transparent, and turbid solutions have been subjected to daylight for 7 months, to ultraviolet and laser irradiation, as well as to an electron beam. Solar radiation is found to favor the Ag2S reduction to Ag and/or the formation of Ag2S/Ag hybrid nanoparticles in the solution. At a high amount of hybrid nanoparticles, the exciton–plasmon interaction causes asymmetry in the absorption spectra. The exposure of Ag2S particles precipitated from the solution with the electron beam leads to the reversible growth of Ag threads. The possible exciton–plasmon interplay mechanisms in Ag2S/Ag hybrid nanoparticles are considered. The physical mechanisms of the changing Ag2S stoichiometry, the formation of metallic Ag and Ag2S/Ag hybrid nanoparticles are the generation of hot carriers and the energy transfer (exciton–plasmon interaction) in a metal–semiconductor hybrid nanosystem are elucidated, as well.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号