首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(lactic acid) (PLA)/nanosilica composites were prepared by blending the PLA and nanosilica in chloroform and then evaporating the solvent to form the composite films in a dish. The Ozawa and Mo equations were used to characterize the nonisothermal cold crystallization kinetics of the PLA/nanosilica composites. The results indicated that the Ozawa equation was not successful while the Mo equation was successful to describe the nonisothermal crystallization kinetics of PLA/nanosilica composites. The values of crystallization activation energy (E c) of the samples were calculated by the Kissinger method. Although the sample crystallization rates were enhanced with the increase of nanosilica content, the samples exhibited increased E c in the presence of nanosilica. The results showed that nanosilica had an effect on both the nucleation and the crystal growth of PLA, promoting the nucleation but interfering with the molecular motion of PLA in the crystallization process.  相似文献   

2.
本文发现了Zn(II)离子掺杂可以加快聚乳酸的结晶过程. 测试了三种Zn(II)盐(ZnCl2、ZnSt和ZnOAc),并与其它离子Mg(II)和Ca(II)进行对照. FT-IR以及变温拉曼光谱分析发现,经Zn(II)离子掺杂后,聚乳酸的结晶度和结晶速率均增加,差示扫描量热技术以及X射线衍射分析也进一步证实. 差示扫描量热技术测定PLA/ZnSt-0.4 wt%材料的结晶率达到22.46%,PLA/ZnOAc-0.4 wt%材料的结晶率达到24.83%.  相似文献   

3.
Graphene (GN)-filled polylactic acid (PLA) nanocomposites were prepared through a solution blending method with GN weight percent ranging from 0.5 to 2?wt%. Rheological, melting and crystallization behaviors of the prepared PLA/GN nanocomposites were investigated by means of dynamic rheological measurements and differential scanning calorimetry (DSC). The shear viscosities of the PLA/GN nanocomposites decreased with increasing GN content, which was remarkably different from previous reports on the modifications using traditional nanofillers (e.g., clay, carbon nanotubes, etc.). The nonisothermal melt crystallization kinetic analysis suggested that GN served as a nucleating agent and could considerably promote the PLA’s crystallization through heterogeneous nucleation. Our findings suggested that at relatively low cooling rates (??≤?10?°C/min) even a small amount of GN promoted the nucleation and considerably increased the crystallization rate. However, the crystallinity began to decrease at higher cooling rates (e.g., ??≥?20?°C/min), especially when the GN content was high (e.g., 2?wt%), possibly owing to the GN aggregation effect considering PLA is a slowly crystallizing polymer.  相似文献   

4.
Polypropylene/multiwalled carbon nanotubes (PP/MWNTs) nanocomposites were prepared by a melt compounding process. The morphology and nonisothermal crystallization of these nanocomposites were investigated by means of optical microscopy, scanning electron microscopy, and differential scanning calorimetry. Scanning electron microscope micrographs of PP/MWNTs composite showed that the MWNTs were well dispersed in the PP matrix and displayed a clear nucleating effect on PP crystallization. Avrami theory, modified by Jeziorny and Mo's method, was used to analyze the kinetics of the nonisothermal crystallization process. It was found that the addition of MWNTs improved the crystallization rate and increased the peak crystallization temperature of the PP/MWNTs nanocomposites as compared with PP. The results show that the Jeziorny theory and Mo's method successfully describe the nonisothermal crystallization process of PP and PP/MWNTs nanocomposites.  相似文献   

5.
The nonisothermal crystallization kinetics of poly(vinylidene fluoride) (PVDF) in PVDF/polymethyl methacrylate (PMMA)/dipropylene glycol dibenzoate (DPGDB) blends, where DPGDB served as a diluent, via solid–liquid (S-L) phase separation during a thermally induced phase separation process was investigated through differential scanning calorimetry (DSC) measurements. It was found that the Ozawa model could only describe the nonisothermal crystallization behavior of PVDF/PMMA/DPGDB system to some extent. The influence of the cooling rate and PMMA/PVDF weight ratio in the PVDF/PMMA/DPGDB system on the crystallization mechanism was also examined based on the Avrami–Jeziorny method and Mo method. Primary crystallization and secondary crystallization were observed in the Avrami–Jeziorny analysis. The analysis by the Avrami–Jeziorny and Mo models indicated that the increase of PMMA/PVDF weight ratio decreased the crystallization rate during the primary crystallization stage. The results showed that the Mo method could well explain the kinetics of the primary PVDF crystallization. The Avrami–Jeziorny method, however, could not well describe the nonisothermal crystallization process of PVDF in the primary crystallization stage. The activation energy, determined by the Kissinger method, was not suitable to reflect the PVDF crystallization process in the PVDF/PMMA/DPGDB system.  相似文献   

6.
Isotactic polypropylene/poly(cis‐butadiene) rubber (iPP/PcBR) blends were prepared by melt mixing. The influence of PcBR content on crystalline morphology and nonisothermal crystallization behaviors of iPP was investigated by polarized optical microscopy (POM), small angle light scattering (SALS), and differential scanning calorimetry (DSC). The POM showed that an increase of PcBR ranging from 10 vol% to 40 vol% led to less perfection of spherulites, vaguer boundaries between spherulites, and smaller spherulite size, which was quantitatively validated by SALS. The presence of PcBR also remarkably affected the nonisothermal crystallization behaviors of iPP. An addition of PcBR caused higher crystallization peak temperature and a faster crystallization rate, meaning a heterogeneous nucleation effect of PcBR upon crystallization of iPP. For the same sample, the crystallization peak temperature moved to lower temperature and the crystallization rate increased as the cooling rate increased. The Ozawa and combined Avrami and Ozawa equations were used to describe the nonisothermal crystallization process of iPP and blends. The combined Avrami and Ozawa equation was more appropriate for the crystallization of the blends. Crystallization activation energy of iPP and blends was calculated by the Kissinger equation; the result showed that crystallization activation energy decreased as the content of PcBR increased from 30 vol% to 40 vol%.  相似文献   

7.
Nonisothermal crystallization nucleation and its kinetics of in‐situ fibrillar and spherical dispersed phases in poly (phenylene sulfide) (PPS)/isotactic polypropylene (iPP) blends are discussed. The PPS/iPP in‐situ microfibrillar reinforced blend (MRB) was obtained via a slit‐die extrusion, hot stretching, and quenching process, while PPS/iPP common blend with spherical PPS particles was prepared by extrusion without hot stretching. Morphological observation indicated that the well‐defined PPS microfibrils were in situ generated. The diameter of most microfibrils was surprisingly larger than or equal to the spherical particles in the common blend (15/85 PPS/iPP by weight). The nonisothermal crystallization kinetics of three samples (microfibrillar, common blends, and neat iPP) were investigated with differential scanning calorimetry (DSC). The PPS microfibrils and spherical particles could both act as heterogeneous nucleating agents during the nonisothermal crystallization, thus increasing the onset and maximum crystallization temperature of iPP, but the effect of PPS spherical particles was more evident. For the same material, crystallization peaks became wider and shifted to lower temperature when the cooling rate increased. Applying the theories proposed by Ozawa and Jeziorny to analyze the crystallization kinetics of neat iPP, and microfibrillar and common PPS/iPP blends, both of them could agree with the experimental results.  相似文献   

8.
The modified Avrami, Mo, and Kissinger models were applied to investigate the nonisothermal melt crystallization process of dibenzylidene sorbitol (DBS)/poly(butylene terephthalate) (PBT) blends by differential scanning colorimetry (DSC) measurements. The modified Avrami model can describe the nonisothermal melt crystallization processes of DBS/PBT blends fairly well. The cooling rates and the blend composition affect the crystallization of the blends according to Mo crystallization kinetics parameters. The Mo model shows that F(T) increases with increasing crystallinity, indicating that the needed cooling rate when it reached a certain crystallinity increased in unit time, the crystallization rate of DBS/PBT blends is faster than the crystallization rate of pure PBT, and the crystallization rate of the DBS/PBT blends with 0.5% DBS is fastest. The Kissinger model showed that the crystallization activation energy of DBS/PBT blends is lower than the activation energy of pure PBT; the crystallization activation energy of the DBS/PBT blends with 0.5% DBS is the lowest.  相似文献   

9.
The nonisothermal crystallization kinetics of poly (vinylidene fluoride) (PVDF) in PVDF/tributyl citrate (TBC) blends having undergone thermally induced phase separation were investigated through differential scanning calorimetry measurements. Ozawa theory, Mo's method and Kissinger model were used to analyze the kinetics of the nonisothermal crystallization process. The Ozawa theory failed to describe the crystallization behavior of PVDF in the PVDF/TBC blends, whereas the Mo model was able to describe the nonisothermal crystallization process fairly well. The crystallization activation energy was determined by the Kissinger method, and was in the range of 90–165 kJ/mol.  相似文献   

10.
11.
Correlations between polyethylenes of different compositions and branching architectures and the temperature dependence of their viscoelastic behavior as well as the dependence of the nonisothermal crystallization behaviors on the cooling rate were described. To analyze the thermorheological behavior of the various classical polyethylenes, a method proposed by van Gurp and Palmen was utilized and the classical high-pressure low-density polyethylene (LDPE) was found to be thermorheologically complex, while for high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE), thermorheological simplicity was observed. The Avrami and Mo methods were applied to describe the nonisothermal crystallization kinetics of the different PEs for various cooling rate. The values of the kinetic parameter F(T), kinetic crystallization rate constant (Zc), and half-time of crystallization (t1/2) indicated that long-chain branching (LCB) had the role of being a heterogeneous nucleating agent and accelerated the crystallization of polyethylene. Moreover, an HDPE sample of both high molecular weight (Mw) and molecular weight distribution (MWD) had a different crystallization rate dependence from the other samples at various corresponding cooling rates. The crystallization activation energy for nonisothermal crystallization of different PEs was determined using the Kissinger method and showed that the presence of LCB as well as high Mw can increase the crystallization activation energy of polyethylene.  相似文献   

12.
Nonisothermal crystallization kinetics of polypropylene (PP) nanocomposite reinforced with 0.5 wt. % single-walled carbon nanotubes (SWNT) was characterized by differential scanning calorimetry at five different cooling and heating rates. The Avrami, Ozawa, and Seo-Kim kinetic models were used to describe the nonisothermal crystallization of the polymer and its nanocomposite. The addition of nano-filler, in general, improved the crystallization rate and increased the peak crystallization temperature of the nanocomposite as compared to PP. The results show that the Avrami and Seo-Kim models are suitable under different cooling rate conditions but that the Ozawa model is inappropriate for the nanocomposite. Equilibrium melting temperatures, derived from the linear Hoffman-Weeks equation, were shown to decrease in the nanocomposite. Additional analysis was performed based on the Thomson-Gibbs, Lauritzen-Hoffman, and Dobreva-Gutzowa theories, which were applied to take into account the lamellar thickness, nucleating agent, and nucleating activity of the nanocomposite in the nonisothermal melt crystallization process.  相似文献   

13.
The nonisothermal crystallization process of polycaprolactone (PCL)/crosslinked carboxylated polyester resin (CPER) blends has been investigated for different blend concentrations by differential scanning calorimetry (DSC). The DSC measurements were carried out under different cooling rates namely: 1, 3, 5, 10, and 20°C/min. Thermally induced crosslinking of CPER in the blends was accomplished using triglycidyl isocyanurate as a crosslinking agent at 200°C for 10 min. The cured PCL/CPER blends were transparent above the melting temperature of PCL and only one glass transition temperature, Tg, located in the temperature range between the two Tgs of the pure polymer components, was observed, indicating that PCL and crosslinked CPER are miscible over the entire range of concentration. The nonisothermal crystallization kinetics was analyzed based on different theoretical approaches, including modified Avrami, Ozawa, and combined Avrami–Ozawa methods. All of the different theoretical approaches successfully described the kinetic behavior of the nonisothermal crystallization process of PCL in the blends. In addition, the spherulitic growth rate was evaluated nonisothermally from the spherulitic morphologies at different temperatures using polarized optical microscope during cooling the molten sample. Only one master curve of temperature dependence of crystal growth rate could be constructed for PCL/CPER blends, regardless of different blend concentrations. Furthermore, the activation energy of nonisothermal crystallization process (ΔEa) was calculated as a function of blend concentration based on the Kissinger equation. The value of ΔEa was found to be concentration dependent, i.e., increasing from 83 kJ/mol for pure PCL to 115 and 119 kJ/mol for 75 and 50 wt% PCL, respectively. This finding suggested that CPER could significantly restrict the dynamics of the PCL chain segments, thereby inhibit the crystallization process and consequently elevate the ΔEa.  相似文献   

14.
Hollow glass microspheres (HGMs) were surface modified by a rare-earth/titanium coupling agent. Then polypropylene/HGMs composites were prepared by the method of melt blending. The nonisothermal crystallization of the polypropylene (PP) and its composites were investigated by differential scanning calorimetry. The results showed the modified HGMs caused a decrease in the peak crystallization temperature and onset crystallization temperature. Further analysis of the nonisothermal crystallization kinetics, by using the Jeziorny and Mo equations, showed that the crystallization rate rose with increasing cooling rate. Moreover, the presence of the modified HGMs slightly increased the crystallization rates of PP.  相似文献   

15.
The mechanical properties, morphology, crystallization, and melting behaviors and nonisothermal crystallization kinetics of poly (trimethylene terephthalate)(PTT)/maleinized acrylonitrile-butadiene-styrene (ABS-g-MAH) blends were investigated by an impact tester, polarized optical microscopy, and differential scanning calorimetry (DSC). The results suggested that the ABS-g-MAH component served as both a nucleating agent for increasing the crystallization rate and as a toughening agent for improving the impact strength of PTT. When the ABS-g-MAH content was 5wt.%, the blend had the best toughness and a high crystallization rate. The blends showed different crystallization rates and subsequent melting behaviors due to their different ABS-g-MAH contents. The Ozawa theory and the method developed by Mo and coworkers were used to study the nonisothermal crystallization kinetics of the blends. The kinetic crystallization rate parameters suggested that the proper contents of ABS-g-MAH can highly accelerate the crystallization rate of PTT, but this effect nearly reaches saturation for ABS-g-MAH contents over 5%. The Ozawa exponents calculated from the DSC data suggested that the PTT crystals in the blends have similar growth dimensions as those in neat PTT, although they are smaller and/or imperfect. The effective activation energy calculated by the method developed by Kissinger also indicates that the blends with higher ABS-g-MAH content were easier to crystallize.  相似文献   

16.
In order to obtain poly(ethylene terephthalate) (PET) engineering plastics with good flame retardancy, heat resistance, and mechanical properties, a novel phosphorus-containing copolyester (PET-co-DDP)/organo-montmorillonite (OMMT 1%) nanocomposite (PET-co-DDP/OMMT) was prepared by in situ intercalating polymerization. Nonisothermal crystallization kinetics and nanoscale morphology of this composite have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). Based on the results of the nonisothermal crystallization kinetics, the flame-retardant copolyester PET-co-DDP has a lower crystallization rate than pure PET, while PET-co-DDP/OMMT nanocomposite has a higher crystallization rate than pure PET. Based on the Augis and Bennett method, the activation energies for nonisothermal crystallization of pure PET, PET-co-DDP, and PET-co-DDP/OMMT nanocomposite were evaluated as 101, 138, and 76 kJ mol?1, respectively. All the evidence shows that PET-co-DDP strongly influences the crystallization behavior because of its irregular chain structure, while the addition of nanoscale OMMT to this copolymer can significantly enhance the crystallization rate owing to its remarkable nucleating effect. An understanding of the above crystalline behaviors will be beneficial in preparing PET engineering plastics with good overall comprehensive performance.  相似文献   

17.
Crystallization behavior of isotactic polypropylene (i-PP) in nonisothermal conditions was studied by wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) using monochromatized X-rays from synchrotron radiation. It was demonstrated that the crystallization rate during continuous cooling with a constant rate is not only a function of the actual, momentary temperature, but also depends on the cooling rate. Except for temperatures close to the melting temperature, the measured values of the crystallization rate are much smaller than those evaluated from isothermal crystallization. SAXS studies revealed two regions of changes in lamellar morphology occurring during the initial and final periods of the process.  相似文献   

18.
A novel method was employed to modify the surface of carbon black (CB) by an organic small molecule in a Haake Rheomix mixer. The modified carbon black (MCB) was dispersed uniformly in poly(lactic acid; PLA). The crystallization behaviors of PLA, PLA/CB and PLA/MCB composites were investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and polarizing optical microscopy. It is found that the addition of CB or MCB can influence the crystallization behavior of PLA. PLA/MCB has a faster crystallization rate and higher crystallization peak temperature than PLA/CB. For non-isothermal studies, Jeziorny and Mo equations were employed. The Mo equation can well describe the non-isothermal crystallization of the three samples. For PLA/CB and PLA/MCB composites containing 3wt% fillers, the nucleating activity for CB is about 0.32, and about 0.16 for MCB. All these results show that MCB is an effective nucleating agent. PLA/MCB has a higher nucleation rate than PLA/CB because of the finer dispersed particles size and improved interaction between MCB and PLA.  相似文献   

19.
The morphology and nonisothermal crystallization behavior of polypropylene modified by ionomers based on ethylene copolymers (Surlyn 8920 and 9320) were investigated by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The crystallization rate of polypropylene was accelerated by the ionomers which initiated heterogeneous nucleation of the polypropylene. At low ionomers content (0.25 wt%), Surlyn 8920, neutralized by sodium, was more efficient to enhance the crystallization rate of polypropylene than Surlyn 9320 (neutralized by zinc). The crystallization process of polypropylene modified by the ionomers was analyzed by different kinetics models. The study showed that the Mo approach was applicable for this system, whereas the Avrami, Jeziorny, and Ozawa methods were not. Furthermore, the notched impact strength of polypropylene modified by the ionomers was increased without any reduction of tensile strength and flexural modulus.  相似文献   

20.
Polypropylene grafted silane and styrene (named PP-g-Si/St in this article) was successfully prepared by radical graft polymerization initiated by γ-ray irradiation. The influence of total absorbed dose on the graft ratio of vinyltrimethoxysilane onto PP and the melt flow rate (MFR) of the PP-g-Si/St product were studied. The effect of graft ratios of vinyltrimethoxysilane on the melting point and nonisothermal crystallization kinetics of PP-g-Si/St was investigated by the method of differential scanning calorimetry (DSC). With increasing vinyltrimethoxysilane and styrene (used as viscosity modifier and free radical source) grafted on PP, the melting point of PP-g-Si/St became lower. Several different analysis methods, including those of Avrami, Jeziorny, and Mo and colleagues, were employed to describe the nonisothermal crystallization process of the grafted samples. The results indicate that the peak temperature of crystallization of PP-g-Si/St sample was lower than that of virgin PP. Crystallization kinetics revealed that the rates of nucleation and growth were affected differently by the graft ratio of vinyltrimethoxysilane onto PP. The activation energy was calculated on the basis of the method of Kissinger, and the values were 253.6 and 215.7 kJ/mol for virgin PP and PP-g-Si/St, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号