首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic enantioselective borane reduction of ketones is a well-studied theme1. Since the pioneering work of Corey2, a variety of good catalysts have been synthesized through further modification on simple amino alcohols and their corresponding amino acids,3,4 . But when simple amino alcohols were directly used in the reduction their catalytic efficiency was very low. For the first time Buono5 has reported through carefully chosen reaction condition the catalytic efficiency of a simple…  相似文献   

2.
Bio-derived ethanol is a promising green and sustainable hydrogen-donor solvent. Herein, we have developed Ir-catalyzed transfer hydrogenation of ketones and aldehydes using ethanol as a hydrogen source with amides as simple ligands. Furthermore, the alkylation of ketones and tandem alkylation/transfer hydrogenation of acetophenones is reported with ethanol.  相似文献   

3.
An efficient and straightforward method for oxidation of the benzylic alcohols to the corresponding aldehydes and ketones has been accomplished using triphenylmethylphosphonium dichromate (MTPPD) under solvent-free conditions with high chemoselectivity. The reaction is fast with good yields and straightforward workup.  相似文献   

4.
Chenjie Zhu  Lei Ji 《合成通讯》2013,43(14):2057-2066
An efficient, facile, and rapid oxidation of alcohols to the corresponding aldehydes or ketones with a stoichiometric amount of iodosobenzene (PhIO) in the presence of catalytic amounts of 2,2,6,6-tetramethyl-1-piperidinyloxyl free radical (TEMPO), KBr, and a surfactant, such as SDS (sodium dodecylsulfate), was reported. The oxidation proceeded in water at room temperature to afford aldehydes or ketones in excellent yields and high selectivity without overoxidation to carboxylic acids. Selective oxidation of primary alcohols in the presence of secondary alcohols was also achieved with the catalytic system of PhIO/TEMPO/KBr/SDS. A possible mechanism for the oxidation was supposed.  相似文献   

5.
A novel method of converting aldehydes and ketones to the corresponding alcohols based on selective indirective electroreduction was found, in which EtOH was used as a support electrolyte and Al(OC2H5)3 as intermedia that was produced on spot reduction by electrolysis. The reaction took place in a cell with two Al electrodes.  相似文献   

6.
Green oxidation of benzyl halides to the corresponding aldehydes or ketones was achieved in aqueous media using trimethylamine N-oxide generated in situ from trimethylamine and H2O2. The yield of the reaction was excellent and the workup was simple.  相似文献   

7.
A new methodology was developed for analysis of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography (HPLC) coupled to electrochemical detection. The electrochemical oxidation of 5-hydroxymethylfurfural, 2-furfuraldehyde, butyraldehyde, acetone and methyl ethyl ketone derivatized with 2,4-dinitrophenylhydrazine (DNPH) at glassy carbon electrode present a well defined wave at +0.94 V; +0.99 V; +1.29 V; +1.15 V and +1.18 V, respectively which are the basis for its determination on electrochemical detector. The carbonyl compounds derivatized were separated by a reverse-phase column under isocratic conditions with a mobile phase containing a binary mixture of methanol / LiClO4(aq) at a concentration of 1.0 × 10−3 mol L−1 (80:20 v/v) and a flow-rate of 1.1mL min−1 . The optimum potential for the electrochemical detection of aldehydes-DNPH and ketones-DNPH was +1.0 V vs. Ag/AgCl. The analytical curve of aldehydes-DNPH and ketones-DNPH presented linearity over the range 5.0 to 400.0 ng mL−1, with detection limits of 1.7 to 2.0 ng mL−1 and quantification limits from 5.0 to 6.2 ng mL−1, using injection volume of 20 μL. The proposed methodology was simple, low time-consuming (15 min/analysis) and presented analytical recovery higher than 95%.  相似文献   

8.
9.
Abstract

Cyanosilylation of various aldehydes and ketones with TMSCN proceeded smoothly under mild conditions to give the corresponding cyanohydrin trimethylsilyl ethers in the presence of nanocrystalline magnesium oxide. The cyanohydrin trimethylsilyl ethers of aldehydes produced cyanohydrins in good to high yields on treatment with 2 N HCl. 29Si NMR spectral evidence proved that the reaction proceeds through the hypervalent silicate species by coordination to O2?/O? (Lewis basic site) of nanocrystalline magnesium oxide.  相似文献   

10.
芳香酮的高效对映选择性转移氢化   总被引:2,自引:0,他引:2  
手性芳香醇在制药工业上有重要的应用,因而利用芳香酮的对映选择性氢化制备相应的手性醇已引起人们极大关注.近10年来,用手性金属配合物为催化剂,利用种种有机物作氢源,实现芳香酮的不对称氢转移氢化取得了很大进展.但这些反应过程的催化活性仍然较低,底物酮与催化剂.  相似文献   

11.
Silica sulfuric acid (SSA) was found to efficiently catalyze the conversion of aldehydes and ketones directly into the corresponding gem-dihydroperoxides (DHPs) on treatment with aqueous 30% H2O2 at room temperature. Mild reaction conditions, good to excellent yields, short reaction times, low environmental impact, and recyclability of the catalyst are the main advantages of this synthetic method.  相似文献   

12.
刘霖  魏运洋  岳彩波  季柳燕 《应用化学》2007,24(11):1327-1331
2,2,6,6-四甲基-N-氧自由基哌啶醇(2,2,6,6-tetramethyl-piperidin-4-ol-N-oxyl,TEMPO)与氯乙酰氯反应生成2-氯乙酸-2,2,6,6-四甲基-1-氧-4-哌啶醇酯,该酯与N-甲基咪唑发生季铵化反应后再与六氟磷酸钾进行离子交换制得2,2,6,6-四甲基-N-氧自由基哌啶醇负载离子液体TEMPO-IL。温和条件下以离子液体1-甲基-3-丁基咪唑六氟磷酸盐(1-butyl-3-methylimidazolium hexafluorophosphate,[bmim]PF6)为溶剂,TEMPO-IL和CuCl为催化剂,分子氧氧化各种醇为相应的醛或酮。研究发现,该氧化体系对苄醇和烯丙醇有较好的氧化效果,65℃下反应10h左右,转化率可达99%,收率可达80%~90%。氧化体系对醛酮有高度的选择性,在实验所采用的条件范围内未检测到有羧酸生成。溶剂和催化剂可循环使用,在苯甲醇的氧化中,溶剂和催化剂循环使用6次,反应转化率和苯甲醛的收率保持不变。  相似文献   

13.
分子氧氧化醇的研究进展   总被引:1,自引:0,他引:1  
刘俊华  王芳  徐贤伦 《化学进展》2007,19(11):1718-1726
鉴于分子氧具有经济、环保、易得的优势,本文从均相催化、多相催化以及新材料的角度阐述了近年来液态醇选择氧化到醛酮的进展。着重介绍了过渡金属作为活性组分构成的催化体系,较详细的对新催化材料的研究做了一下归类,并对其在醇的氧化反应中的应用做了介绍,认为传统催化领域的研究仍然具有魅力,同时新材料的开发与运用在未来的具有诱人的前景。  相似文献   

14.
朱晨杰  魏运洋  计磊  张倩 《应用化学》2010,27(3):267-271
将聚苯乙烯树脂(PS)先碘化再乙酰基化,制得了负载型二乙酰氧碘苯(PS-DIB)作为氧化剂。2,2,6,6-四甲基-N-氧自由基哌啶醇(TeMPO)与1,4-二溴丁烷反应生成4-溴丁氧基-2,2,6,6-四甲基-哌啶-1-氧化物,再与N-甲基咪唑发生季铵化反应,生成的溴化季铵盐与四氟硼酸钠进行离子交换制得氟硼酸型2,2,6,6-四甲基-N-氧自由基哌啶负载离子液体(TeMPO-IL)。室温下,以离子液体1-甲基-3-丁基咪唑四氟硼酸盐([bmim]BF4)为溶剂,PS-DIB为氧化剂,TeMPO-IL为催化剂,选择性协同氧化各种醇为相应的醛或酮。在实验条件范围内未检测到羧酸副产物。氧化剂、催化剂和溶剂均可循环使用,在苯甲醇的氧化中,循环使用5次,反应的转化率和收率均保持基本不变。  相似文献   

15.
Various ruthenium(II) complexes that contain phosphinesulfonate chelate have been synthesized. Arene‐free complexes were found to be efficient in the base‐free hydrogenation of various aryl ketones, whereas the arene‐containing precatalysts required the presence of an amine as an additive. The seminal asymmetric hydrogenation reaction by using the new Sulfo‐Binepine ligand was also investigated for the possible intervention of a dihydride species.  相似文献   

16.
Iron complexes generated in situ catalyze homogeneously the transfer hydrogenation of aliphatic and aromatic ketones by utilizing 2‐propanol as a hydrogen donor in the presence of base. The influence of different reaction parameters on the catalytic activity is investigated in detail by applying a three‐component catalyst system composed of an iron salt, 2,2′:6′,2′′‐terpyridine, and PPh3. The scope and limitations of the described catalyst is shown in the reduction of 11 different ketones. In most cases, high conversion and excellent chemoselectivity are obtained. Mechanistic studies indicate a monohydride reaction pathway for the homogeneous iron catalyst.  相似文献   

17.
18.
The concept of frustrated Lewis pairs (FLPs) has been widely applied in various research areas, and metal‐free hydrogenation undoubtedly belongs to the most significant and successful ones. In the past decade, great efforts have been devoted to the synthesis of chiral boron Lewis acids. In a sharp contrast, chiral Lewis base derived FLPs have rarely been disclosed for the asymmetric hydrogenation. In this work, a novel type of chiral FLP was developed by simple combination of chiral oxazoline Lewis bases with achiral boron Lewis acids, thus providing a promising new direction for the development of chiral FLPs in the future. These chiral FLPs proved to be highly effective for the asymmetric hydrogenation of ketones, enones, and chromones, giving the corresponding products in high yields with up to 95 % ee. Mechanistic studies suggest that the hydrogen transfer to simple ketones likely proceeds in a concerted manner.  相似文献   

19.
20.
We present herein a novel strategy for the preparation of ketones from aldehydes and allylic boronic esters. This reaction involves the allylation of aldehydes with allylic boronic esters and the Rh-catalyzed chain-walking of homoallylic alcohols. The key to this successful development is the protodeboronation of alkenyl borylether intermediate via a tetravalent borate anion species in the presence of KHF2 and MeOH. This approach features mild reaction conditions, broad substrate scope, and excellent functional group tolerance. Mechanistic studies also supported that the tandem allylation and chain-walking process were involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号