首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
To study the dispersion property of CO2 in organic liquids, the solubility of CO2, the volume of CO2 + organic liquids under different pressure at 318.15 K were measured and the radial distribution function of CO2 molecule aggregate in the organic liquids was calculated by molecule dynamic simulation. The results show that the aggregate of CO2 molecules in the organic liquids is formed obviously; the aggregation and disperse property of CO2 molecule in the organic liquids is affected by the structure and polarity of the organic molecule at near critical and supercritical condition of CO2 dominantly.  相似文献   

2.
CO2 flooding is a win-win technology, sequestrating greenhouse CO2 while producing a significant amount of crude oil to help defray the cost of CO2 sequestrating and enhancing oil recovery. However, due to the difference of sedimentary environment and poor properties of formations, physical properties of the crude oil and the effect of CO2 flooding are not always satisfactory in most oilfields of China. Therefore, in this article, to improve the understanding of the oil recovery mechanisms and feasibility of CO2 flooding in China, based on the oil and gas of Mao-3 oilfields, phase behavior of the CO2 and crude oil system was investigated. Parameters like saturated pressure, volume factor, gas oil ratio, and viscosity were measured and their relationships analyzed. Results show that crude oil of Mao-3 reservoir and CO2 has good mutual dissolution under reservoir conditions, and CO2 could expand the oil and reduce the oil viscosity greatly. As a result, formation energy could be enhanced and flow characteristics of the oil could be improved by CO2 flooding.  相似文献   

3.
The synthesis and use in enhanced oil recovery applications of a novel CO2-philic surfactant derived from maleic anhydride and 2-butyl-1-octanol is reported. The synthesis involved the esterification of maleic anhydride to produce diester followed by sulfonation of the esterified product. The esterification reaction parameters were optimized for the maximum yield of 98.4%. By employing a silica sulfuric acid catalyst, the reaction kinetics of esterification were also investigated. The activation energy was found to be 45.58 kJ/mol. The sulfonation reaction of the esterified product was performed by using sodium bisulfite, and a yield of 82% of surfactant was achieved. The synthesized surfactant lowered the interfacial tension between CO2/brine to 3.1 mN/m and effectively reduced the CO2 mobility. This surfactant has a great potential to be used for CO2 mobility control for CO2?EOR applications.   相似文献   

4.
CO2 flooding process has been a proven valuable method that could not only enhance oil recovery but also store greenhouse gas. However, CO2 source greatly restrict its application in China. In this article, based on the produced oil and gas of Jilin oilfield, slim tube tests were conducted to study the feasibility of the produced gas reinjection without separation. In addition, according to the phenomenon of the experiment, displacement process was divided into three stages. Chromatographic analysis was conducted to study the mechanism of production gas reinjection during CO2. Results indicate that components of the produced oil change along with CO2 content, displacement pressure and production stages.  相似文献   

5.
Owing to the high acid number of Xinjiang heavy oil and incomplete demulsification after pipelining, this article discusses the application of CO2-triggered switchable surfactants to the emulsified transport of several Xinjiang heavy oils in the pipeline. Results show that CO2-triggered switchable surfactants promote the formation and stabilization of oil-in-water (O/W) emulsion in the absence of CO2 as a base. The property parameters of heavy oils fundamentally influence the indigenous emulsifying agents. The emulsion is stable when the heavy oil has a high acid number and low asphaltene content, which is also affected by some physical factors.  相似文献   

6.
The synthesis of CO2 philic surfactant using maleic anhydride and 4-tert-butylbenzyl alcohol is reported. We reacted maleic anhydride with 4-tert-butylbenzyl alcohol to form bis(4-(tert-butyl)benzyl) fumarate and sulfonated the produced diester. The esterification reaction was optimized for a maximum yield of 98% of bis(4-(tert-butyl)benzyl) fumarate. First-order reaction kinetics with respect to acid was observed. The activation energy was found to be 55.62 kJ/mol. The sulfonated product of diester was obtained by the sulfonation reaction and the yield of 82% of surfactant was achieved. The in-house developed surfactant effectively lowered down the IFT between CO2/brine to 4.2 mN/m. This surfactant is targeted for CO2-EOR applications.  相似文献   

7.
Switchable surfactants, particularly those triggered by CO2 used for switchable foam control, are relatively less documented. In this article, the foaming performance of 2-alkyl-1-hydroxyethylimidazolinium bicarbonate cationic surfactants (HEAIBs) was investigated for the first time. The foaming properties of these surfactants demonstrate that HEAIBs can generate foam with moderate stability, on demand, can be rapidly yet reversibly dissipated upon exposure to air. The results illustrated such a facile trigger, and the foam on/off transition would have huge potential to form a new class of stimuli-response foaming agents.   相似文献   

8.
9.
A complete, critical evaluation of all phase diagrams and thermodynamic data was performed for all condensed phases of the (NaCl + Na2SO4 + Na2CO3 + KCl + K2SO4 + K2CO3) system, and optimized parameters for the thermodynamic solution models were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range order, where the cations (Na+ and K+) were assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andCl-) were assumed to mix on an anionic sublattice. The thermodynamic properties of the solid solutions of (Na,K)2(SO4,CO3) were modelled using the Compound Energy Formalism, and (Na,K)Cl was modelled using a substitutional model in previous studies. Phase transitions in the common-cation ternary systems (NaCl + Na2SO4 + Na2CO3) and (KCl + K2SO4 + K2CO3) were studied experimentally using d.s.c./t.g.a. The experimental results were used as input for evaluating the phase equilibrium in the common-cation ternary systems. The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature are reproduced within experimental error limits.  相似文献   

10.
The synthesis of novel CO2 philic surfactant using maleic anhydride and dipropylene tertiary butyl alcohol is reported. The synthesis involved the esterification of maleic anhydride to produce bis(2-(2-(tert-butoxy)propoxy)propyl) maleate and subsequent sulfonation of the esterified product. Para toluene sulfonic acid was employed as catalyst for the esterification reaction. The esterification reaction was optimized for the maximum yield of 98% of bis(2-(2-(tert-butoxy)propoxy)propyl) maleate. The esterification reaction kinetics employing heterogeneous catalyst were also studied. Although this is a bimolecular reaction, a first order reaction kinetics with respect to acid has been observed. The activation energy was found to be 58.71 kJ/mol. The diester was followed by the sulfonation process and a yield of 85% of surfactant was achieved. The synthesized surfactant successfully lowered down the IFT between CO2/brine to 1.93 mN/m. This surfactant has a great potential to be used for CO2-EOR applications.  相似文献   

11.
12.
13.
This work aims to the extraction of the priority pollutant 4-nitrophenol (4-NP) from water by emulsion liquid membrane (ELM). Liquid membrane consists of a diluent (hexane) and a surfactant (Span 80). Sodium carbonate solution was used as internal aqueous phase. Effects of important experimental conditions governing the stability of the W/O emulsion were investigated. Influence of operating parameters that affects the permeation of 4-NP such as surfactant concentration, emulsification time, sulfuric acid concentration in external phase, acid type in external phase, internal phase concentration, type of internal phase, stirring speed, volume ratio of internal phase to membrane phase, treatment ratio, 4-NP initial concentration, and diluent type was examined. This study also evaluated the effect of Na2CO3 concentration in the internal aqueous phase on the stripping of 4-NP. Additionally, the reuse of the recovered membrane was studied. Under most favorable conditions, practically all the 4-NP and aniline (AN) molecules present in the feed phase were extracted. The recovery of the membrane phase was total and the extraction of 4-NP was not decreased. The ELM treatment process represents a very interesting advanced separation process for the removal of 4-NP and AN from aqueous solutions.  相似文献   

14.
A critical evaluation of all phase diagram and thermodynamic data were performed for the solid and liquid phases of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system and optimized model parameters were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range ordering, where the cations (Na+ and K+) are assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andS2-) are assumed to mix on an anionic sublattice. The Compound Energy Formalism was used for modelling the solid solutions of (Na, K)2(CO3, SO4, S). The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature were reproduced within experimental error limits.  相似文献   

15.
16.
17.
The visible-light-driven photoreduction of CO2 to value-added chemicals over metal-free photocatalysts without sacrificial reagents is very interesting, but challenging. Herein, we present amide-bridged conjugated organic polymers (amide-COPs) prepared via self-condensation of amino nitriles in combination with hydrolysis, for the photoreduction of CO2 with H2O without any photosensitizers or sacrificial reagents under visible light irradiation. These catalysts can afford CO as the sole carbonaceous product without H2 generation. Especially, amide-DAMN derived from diaminomaleonitrile exhibited the highest activity for the photoreduction of CO2 to CO with a generation rate of 20.6 μmol g−1 h−1. Experiments and DFT calculations confirmed cyano/amide groups as active sites for CO2 reduction and second amine groups for H2O oxidation, and suggested that superior selectivity towards CO may be attributed to the adjacent redox sites. This work presents a new insight into designing photocatalysts for artificial photosynthesis.

Amino nitrile-derived conjugated organic polymers can realize the photoreduction of CO2 with water to CO without H2 generation efficiently.  相似文献   

18.
19.
Bicontinuous and water-in-diesel microemulsions were formulated using single nonionic alkyl poly glycol ethers combined with hydrophilic alcohol ethoxylates. The phase behavior at temperatures ranging from 0°C to 50°C was investigated. Visual inspection as well as cross-polarizers were used to detect anisotropy. The fish phase diagrams were determined. The presence of the hydrophilic alcohol ethoxylates was necessary to initiate both types of microemulsions. Increasing the hydrophobic chain length of the surfactant led to a wider range of temperature stability at lower surfactant concentration. Meanwhile, increasing the ethylene oxide units in the headgroup by two units led to a phase diagram that is dominated by lyotropic liquid crystal. The formulated water in diesel microemulsions were tested experimentally in a 4-cylinder diesel engine. From this it is observed that the emissions of NOx, soot, and CO2 were reduced substantially compared to neat diesel, while for the CO the reduction occurs just at low load.   相似文献   

20.
The electrocatalytic CO2 reduction reaction (CO2RR) is one of the key technologies of the clean energy economy. Molecular-level understanding of the CO2RR process is instrumental for the better design of electrodes operable at low overpotentials with high current density. The catalytic mechanism underlying the turnover and selectivity of the CO2RR is modulated by the nature of the electrocatalyst, as well as the electrolyte liquid, and its ionic components that form the electrical double layer (EDL). Herein we demonstrate the critical non-innocent role of the EDL for the activation and conversion of CO2 at a high cathodic bias for electrocatalytic conversion over a silver surface as a representative low-cost model cathode. By using a multiscale modeling approach we demonstrate that under such conditions a dense EDL is formed, which hinders the diffusion of CO2 towards the Ag111 electrocatalyst surface. By combining DFT calculations and ab initio molecular dynamics simulations we identify favorable pathways for CO2 reduction directly over the EDL without the need for adsorption to the catalyst surface. The dense EDL promotes homogeneous phase reduction of CO2via electron transfer from the surface to the electrolyte. Such an outer-sphere mechanism favors the formation of formate as the CO2RR product. The formate can undergo dehydration to CO via a transition state stabilized by solvated alkali cations in the EDL.

In addition to the commonly accepted inner-sphere mechanism for e transfer, we show that an outer-sphere electron transfer from the cathode to CO2 is operable at high overpotentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号