首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The ductile to brittle transition that occurs in amorphous Fe78Si9B13 (METGLAS-2605S2) has been investigated using mechanical measurements over the temperature range 250–370 °C. The fracture toughness values, K Ic , have been determined for a range of annealing times (5–30 min) and cooling rates of 15–45 °C/min. A pronounced ductile to brittle transition is observed around 310(10) °C although no obvious structural changes are evident as indicated by x-ray diffraction. Comparison of transmission and back-scattered conversion electron 57Fe Mössbauer spectra for the bulk as-received ribbon in the ductile state ( $K_{Ic}=52~{\rm MPa} \cdot \sqrt{m}$ ) and the ribbon annealed to the brittle state ( $K_{Ic}\sim10~{\rm MPa} \cdot \sqrt{m}$ ) indicates magnetic texture effects in both the bulk and on the surface of these amorphous ribbons, related to the magnetostriction resulting from the quenched-in stress during the ribbon production process, and the ensuing stress-relief upon annealing.  相似文献   

2.
Composite bone-like substitutes composed of poly-L-lactide (PLLA) and β-tricalcium phosphate (β-TCP) (average particle size: 4.43 μm) were fabricated and the properties were investigated. β-TCP was prepared by wet chemical precipitation, followed by calcining at 800°C. Composite films were obtained by completely mixing dissolved PLLA with granules of β-TCP; the agglomerated β-TCP powder granules were distributed homogeneously in the PLLA matrix. PLLA/β-TCP composite materials were obtained by cold and hot pressing the composite film at a pressure of 130 MPa and temperature of 185°C–195°C. With increase of the amount of β-TCP powder, the bending strength of the composites decreased while the bending modulus increased. The fracture mechanism of the composites was significantly influenced by the content of β-TCP powder, from ductile fracture to brittle fracture as the β-TCP powder content increased.  相似文献   

3.
《Composite Interfaces》2013,20(6):457-458
Pull-out experiments have been carried out with Kevlar fibres embedded in epoxy resin. Friction accompanied debonding, and had to be allowed for in the analysis. The debonding stress was about equal to the matrix strength for 80°C cured epoxies. However, debonding appears to be a brittle fracture process, and the works of fracture corresponding to the apparent interface strengths are very low, ranging from ca. 20-40 Jm-2 depending on the surface treatment and degree of cure of the resin. Water immersion for 2300 h at room temperature reduced the apparent strengths and works of fracture with some of the surface treated fibres, but not with the untreated fibres. Interface pressures during debonding were 10-15 MPa for the 20°C cured specimens and 20-30 MPa for the 80°C cure. Water soaking markedly reduced the friction coefficients. Post-debonding friction was high, but estimates of the parameters was probably unreliable due to the fibre having a somewhat thick end due to fibrillation when being cut.  相似文献   

4.
ABSTRACT

A low carbon high Mn, Ti microalloyed dual phase TWIP steel has been processed through cold rolling and annealing. X-ray diffraction reveals the maximum austenite (≈92%) in HRACST sample whereas, the 50CD sample shows 29% ferrite. The microstructure of HRAC and HRACST samples reveal austenite grains with annealing twins and deformation induced ferrite (DIF). The higher amount of DIF along with deformation twins form during cold deformation. Annealing at 500°C shows recovery, whereas at 700°C shows partial recrystallisation and at 900°C reveals almost full recrystallisation. TEM microstructures of the 900°C for 30?min samples reveal annealing twins with TiC particle. Strong Brass {110}<112> and Goss{110}<001> texture components are observed in HRAC, HRACST and 50CD samples. Goss Twin (GT) {113}<332> and Copper Twin (Cu-T) {552}<115> components are observed in 50CD sample. Addition of Ti results in an average grain size of 20?μm. Maximum YS (1176?MPa) and UTS (1283?MPa) values with the lowest ductility of 11% have been obtained for the 50CD sample which is related to the formation of extensive deformation twin and a higher fraction of DIF. 700°C-30?min and 700°C-60?min samples show an increase in ductility (23% and 34%, respectively) with a marginal decrease in tensile strength (1054?MPa). Annealing at 900°C shows ductility restoration up to 60% with higher tensile strength compared to HRACST sample. Ductile fracture of HRAC and HRACST samples transform to brittle fracture in the 50CD sample. Annealing at 900°C for 30?min shows ductile fracture with some (Fe, Mn)S and TiC particles.  相似文献   

5.
Rigid, glassy polymers show a diversity of tensile behavior-ranging from apparently brittle to ductile. To delineate some of the factors that control the toughness or impact resistance of these polymers, the yielding behavior of poly (methyl methacrylate) (PMMA) was studied. Results of other workers have shown that the cold flow exhibited by many glassy polymers can be explained qualitatively by a free-volume model. The treatment assumes that molecular flow is permitted when the free volume increase, resulting from the dilatational component of the applied stress, is sufficient to bring the total free volume to that characteristic of the polymer liquid. The present study refines this approach by introducing an “effective temperature,” defined as that hypothetical temperature at which the glass would have an equilibrium free volume equal to the total free volume of the nonequilibrium glass at temperature T. Equations are derived which more satisfactorily describe the temperature and strain-rate dependences of the tensile yield strain of PMMA glass from -10° to 90°C at rates between 0.015 and 120%/sec.  相似文献   

6.
The dislocation mechanisms of formation of the ductile–brittle transition temperature and the low-temperature brittle fracture of metals (single crystals, polycrystals) with various crystal lattices (bcc, fcc, hcp) are considered. The conditions of appearance of cold shortness and intracrystalline crack propagation (brittle fracture) are determined. These conditions can be met in bcc and some hcp metals and cannot be met in fcc and many hcp metals. The nondestructive internal friction (at 100 kHz) method is used to determine the temperature ranges of cold shortness (ductile–brittle transition temperatures) in bcc metals (ferritic–martensitic EK-181 steel, V–4Ti–4Cr alloy), which depend on their structure–phase state and strength (yield strength).  相似文献   

7.
8.
《Composite Interfaces》2013,20(5-6):385-397
Effects of annealing on bending properties of composites reinforced with plain glass woven fabrics that were treated with different concentrations of silane coupling agent were investigated in this paper. Bending strength increased by annealing in the specimen treated with lower silane concentration. Higher annealing temperature in a range from 80°C to 150°C led to higher bending strength. Then, the fracture mode changed from a micro-crack type (low strength type) to a branched matrix crack type (high strength type) by annealing.  相似文献   

9.
A novel polypropylene (PP) fiber was prepared by using gel spinning/crystallization from dilute solutions of ultrahigh molecular weight isotactic polypropylene (i‐UHMWPP), and subsequently drawing at various temperatures. The influence of drawing temperature on the properties of the resulted fibers was investigated. We found that the draw‐ability and mechanical as well as crystallization properties of the fibers obtained were dramatically improved with increasing drawing temperature. When the drawing temperature is below the α‐crystal relaxation temperature of PP, which was measured by wide‐angle X‐ray diffraction (WAXD) analysis as 100–120°C, the fibers are characterized by lower crystallinity and smaller crystals with less perfection, resulting in brittle fracture and subsequently poor mechanical durability. With drawing at temperatures above the α‐crystal relaxation temperature of PP, a novel UHMWPP fiber with Young's modulus of 27 GPa and tensile strength of 1.3 GPa was obtained. Higher crystallinity and larger crystals with better perfection and orientation were observed in this fiber.  相似文献   

10.
Z. F. Zhang  G. He  J. Eckert 《哲学杂志》2013,93(9):897-915
The room-temperature deformation and fracture behaviour of Ti-based composites with ductile dendrites, prepared by copper mold casting and arc-melting techniques, was investigated. Under compressive loading, the Ti-based composites display high fracture strength (about 2000?MPa) and good ductility (about 4 or 10%). The yield strength of the Ti-based composites is relatively low (about 565–923?MPa). However, they have a large strain-hardening ability before failure, due to the interactions between shear bands and dendrites. For the arc-melted Ti-based composites, fracture often occurs in a shear mode with a high plasticity (about 10%). In contrast, the cast Ti-based composites break or split into several parts with a compressive plasticity of 4%, rather than failing in a shear mode. A new fracture mechanism, i.e. distensile fracture, is proposed for the first time to elucidate the failure of the as-cast Ti-based composites. Based on the difference in the fracture modes of the differently prepared composites, the relationships between shear and distensile fracture mechanisms and the corresponding fracture criteria are discussed.  相似文献   

11.
Amorphous poly(l-lactide) (PLLA) was annealed in two different ways: amorphous samples were heated at a given temperature to induce crystallization (one-step annealing); and amorphous samples were first crystallized at a low temperature and subsequently annealed at a higher temperature than the crystallization temperature. Samples thus prepared were measured by DSC. The original amorphous sample exhibited an exothermic peak at about 100°C (exothermic peak I), an exothermic peak just below the melting point (exothermic peak II), and an endothermic peak when it was melted. Exothermic peak I was caused by cold crystallization. When the melting points of PLLA samples, heat-treated in various ways, were plotted as a function of annealing temperature, there was discontinuity at about 120°C. From analyses of wide-angle X-ray diffraction patterns, it was found that when amorphous PLLA was crystallized at a temperature below 120°C, crystallites of the β-form formed, and when annealed at a temperature above 120°C, crystallites of the α-form grew. Thus, exothermic peak I was attributed to cold crystallization of the β-form, and peak II was caused by the phase transition of the β-form to a more stable form.  相似文献   

12.
K. Kang  W. Cai 《哲学杂志》2013,93(14-15):2169-2189
Fracture of silicon and germanium nanowires in tension at room temperature is studied by molecular dynamics simulations using several interatomic potential models. While some potentials predict brittle fracture initiated by crack nucleation from the surface, most potentials predict ductile fracture initiated by dislocation nucleation and slip. A simple parameter based on the ratio between the ideal tensile strength and the ideal shear strength is found to correlate very well with the observed brittle versus ductile behaviours for all the potentials used in this study. This parameter is then computed by ab initio methods, which predict brittle fracture at room temperature. A brittle-to-ductile transition (BDT) is observed in MD simulations at higher temperature. The BDT mechanism in semiconductor nanowires is different from that in the bulk, due to the lack of a pre-existing macrocrack that is always assumed in bulk BDT models.  相似文献   

13.
D. Rupp 《哲学杂志》2013,93(30):4055-4069
The fracture behaviour of polycrystalline sintered and rolled tungsten rods was investigated from ?150°C to 950°C by means of three-point bending tests and electron microscopy where special attention was drawn to the influence of the microstructure. This thorough investigation demonstrates the positive impact of the crystallographic and grain shape anisotropy in tungsten. Specimens extracted along the rolling direction exhibit twice as high fracture toughnesses and a significantly reduced brittle-to-ductile transition temperature than the other two investigated orientations. Furthermore, these specimens show a change in their fracture mode from transgranular to intergranular fracture with crack deflection occurring around 270°C. In an in situ SEM fracture test, the origin of this crack deflection could be clarified. Finally, a fracture mechanics model is presented which predicts correctly the transition between the two fracture modes and which gives an energy criterion suitable to interpret experimental fracture results.  相似文献   

14.
The effect of extrusion temperature on the mechanical properties of high‐density polyethylene (HDPE) was examined using solid‐state extrusion (SSE) and melt‐state extrusion (MSE) techniques. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) investigations were employed to provide evidence for explaining the relationship between mechanical properties and morphology of extrusion moldings. Extruded from a convergence‐divergence die, compared with samples obtained by MSE, the yield strength of samples obtained by SSE was enhanced in both longitudinal and transverse directions with a ductile failure. The yield strength decreased sharply with increasing extrusion temperature. The maximum longitudinal yield strength of samples extruded at 112°C was 181 MPa with an 87% elongation at break; the corresponding values were 28 MPa and 800% for samples extruded at 140°C (MSE); in the transverse direction the yield strength was 27 MPa with a 101% elongation at break for samples extruded at 140°C, while the maximum yield strength was 51 MPa with a 45% of elongation at break for samples extruded at 116°C. Compared with sheets extruded at 140°C, DSC data shows a 5.3°C increase in melting point, a 9.5°C decrease in melt point width, and a 7.1% decrease in crystallinity for sheets extruded at 112°C. SEM indicates that spherulites predominate in MSE samples, while a preferred orientation of the lamellae along the extrusion direction were mainly produced by SSE.  相似文献   

15.
Stick-slip type crack growth was triggered in high-density polyethylene (HDPE) and HDPE/Selar® discontinuous laminar microlayer composites by instrumented Charpy impact under suitable test conditions (temperature ?40°C, hammer speed 3.7 m/s). Fractographic analysis showed that crazing is responsible for this peculiar fracture. The onset of this stick-slip phenomenon was favored by a mixed plane strain/plane stress condition prevailing in the specimens. The relative orientation of the Selar microlayers in respect to the crack growth direction affected the stick-slip type crack growth and the related failure considerably. No stick-slip type crack propagation was observed when gasoline-plasticized specimens were impacted, which failed by ductile tearing instead of crazing.  相似文献   

16.
《Composite Interfaces》2013,20(3):211-223
Past results from the single-fibre pull-out tests are reviewed and new results obtained with carbon in thermoplastics are presented. The force-distance curve during pull-out indicates some pseudo-ductility, in some cases, as the applied force builds up to the failure load. However, the failure itself is not ductile; rather, it is sudden, suggesting brittle fracture. The debonding force vs. embedded length (L) plots range from straight lines intersecting the origin, through smooth curves, to scatter diagrams, depending on the fibre and polymer. Interfacial shear strengths estimated from the shorter embedded lengths are often high and, quite frequently, higher than that of the polymer matrix. In addition, there is normally no correlation between interface properties (strength or work of fracture) and the corresponding polymer properties. This could well be due to the growth of an oriented interphasial layer, with a modulus and strength up to six times greater than that of the bulk polymer, as has been observed for modulus at least, with particulate reinforced materials.  相似文献   

17.
《Composite Interfaces》2013,20(7-9):699-713
The kenaf fiber/soy protein resin interface was characterized. The soy protein isolate (SPI) was modified using a polycarboxylic acid, Phytagel® (PH), to make an interpenetrating network-like (IPN-like structure) structure of the resin. The effects of different PH contents on the interfacial properties were characterized using single fiber composite (SFC) tests and optical microscopy. Kenaf fiber strength was characterized using tensile tests. Kenaf fibers were extracted from nonwoven mats. The length of each kenaf fiber was extended by gluing it to long polyethylene filaments on both sides. After drying the glue, dog-bone shaped SFC specimens were prepared using pure and modified SPI resins. The dried SFC specimens were taken out from the mold and hot-pressed (cured) at 120°C. The interfacial shear strength (IFSS) was calculated using the shear-lag analysis. Single fiber tensile tests at different gauge lengths were performed. The average stresses were computed by fitting the data to Weibull distribution. These values were used in the calculation of the IFSS. After the SFC tests, the specimens were observed under the optical microscope to characterize the fiber fracture modes and the region around the fiber fracture. The SFC tests showed that the IFSS is a function of the PH content which controls the resin shrinkage. It was also seen that the interfacial failure mode is also a function of the PH content. These finding were confirmed by the microbead tests in which E-glass fibers were used with the modified SPI resins.  相似文献   

18.
The effect of transcrystallinity in carbon fiber reinforced poly(p-phenylene sulfide (PPS) composites on the apparent shear strength was investigated with the single fiber pull-out test. Transcrystalline zones around the reinforcing fibers do not seem to improve the adhesion level significantly. Neighbor fibers hinder the formation of the transcrystalline zone and a ductile fracture behavior can be observed. However, the apparent strength level is slightly higher for composites containing such reinforcing neighbor fibers compared with single fiber composite samples. During annealing a brittle interface can be formed in the multifiber composite yielding a higher level of the apparent shear strength.  相似文献   

19.
Microstructural and electrical properties of PZT (lead zirconate titanate) thin films prepared by sol-gel techniques at annealing temperatures in the range from 550°C to 900°C are studied. Perovskite (Pe) grain nucleation in PZT film starts but not completes at 550°C. Along with formation of round Pe (111) grains on the Pt (111) interface, the film contains small Pe and pyrochlore (Py) grains. Films annealed at the temperatures higher than 600°C demonstrate column structure of Pe grains, the amount of Py inclusions reduces with the annealing temperature and practically disappears at 700°C. An increase of annealing temperature leads to enhancement of (100) Pe orientation as a result of Ti diffusion on the Pt surface. Polarization decreases with the annealing temperature (maximum at 600°C), whereas permittivity increases up to the annealing temperature of 750°C.  相似文献   

20.
Ligang Sun  Xiaoqiao He 《哲学杂志》2015,95(31):3467-3485
Affected by twin orientation and spacing distribution, different deformation and failure mechanisms of nanotwinned (NT) Cu films are discovered. For films with the same twin spacing, transition from brittle to ductile and ductile to localized necking with the increase of the slanted angle of twin boundary (TB) from 0° to 90° is examined. Two dominant slip mechanisms: (1) slip intersecting with the TBs; (2) slip parallel to the TBs can uncover the transition mechanisms with consideration of twin orientation. To maintain both relatively high strength and good ductility, the slanted angle can be set close to the ductile to localized necking transition border. Besides, the stress–strain curves obtained in this article show that the mechanical responses on both sides of the turning point 45° are asymmetric. On the other hand, the twin spacing distributions affect the ductility of NT Cu films and have almost no contribution to strengthening. The strength of the NT Cu films mainly depends on the twin density. NT Cu films with different twin spacing have worse ductility than equal twin spacing films due to the local twin spacing asymmetry. The failures can be predicted appearing at TBs adjacent to large twin spacing regions, and the failure propagation direction can also be predicted by knowing the obtuse angle decided by stacking faults and TBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号