首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.  相似文献   

2.
Self-standing composite films consisting of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibril (TOCN) and anionic poly(acrylamide) (PAM) in various weight ratios were prepared by casting and drying of homogeneous mixtures of aqueous TOCN dispersion and PAM solution. PAM/TOCN composite films consisting of 25 % PAM and 75 % TOCN had clearly higher Young’s modulus (13.9 GPa) and tensile strength (266 MPa) than 100 % TOCN film (10.8 GPa and 223 MPa, respectively) or 100 % PAM film (4.9 GPa and 78 MPa, respectively), showing that PAM molecules have mechanical reinforcement ability in TOCN matrix. Some attractive interactions are likely formed between TOCN element surfaces and PAM molecules. In contrast, no such mechanical improvements were observed for poly(vinyl alcohol)/TOCN or oxidized starch/TOCN composite films prepared as references. Moreover, the mechanical properties of the PAM/TOCN composite films were further improved by controlling molecular mass and branching degree of the PAM. The high optical transparency and low coefficient of thermal expansion of the 100 % TOCN film were mostly maintained in the TOCN composite film containing 25 % PAM.  相似文献   

3.
Chitosan films were prepared by casting from its 1% (w/w) solution. Tensile strength (TS) and tensile modulus (TM) of chitosan films were found to be 30 MPa and 450 MPa, respectively. Silane monomer (3-aminopropyl tri-methoxysilane) (0.25%, w/w) was added into the chitosan solution (1%, w/w) and films were casted. Then films were exposed to gamma radiation (5–25 kGy) and mechanical properties were investigated. It was found that at 10 kGy, the values of TS and TM were improved significantly. Silane grafted chitosan film reinforced poly(caprolactone) (PCL)-based tri-layer composites were prepared by compression molding. Silane improved interfacial adhesion between chitosan and PCL in composites. Surface of the films was investigated by scanning electron microscope (SEM) and found better morphology for silane grafted films.  相似文献   

4.
This study aims to optimize the formulation of composite films based on chicken skin gelatin with incorporation of rice starch (10–20%, w/w) and curcumin (0.03–0.10%, w/v). The effect of their interaction on film's tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP) and antioxidant properties (DPPH%) were investigated using a response surface methodology-central composite design (RSM-CCD). The optimized film formulation was further validated to indicate the validity of the prediction model. The optimum conditions of the film were selected with incorporation of rice starch at 20% (w/w) and curcumin at 0.03% (w/v). The optimized film formulation has revealed better mechanical properties with low WVP value and good antioxidant activity. The results showed that optimized composite films formulation based on chicken skin gelatin with the incorporation of rice starch and curcumin has proving good validation of model prediction and can be effectively utilized in food packaging industry.  相似文献   

5.
The biodegradable flexible chitosan film was prepared by solution casting. The physico-mechanical properties, polymer loading (PL), gel content and water uptake of the chitosan film were studied. The tensile strength (TS) and % elongation at break (Eb) of the uncured chitosan film were 7.0 (MPa) and 8%, respectively. Four formulations were developed using 3-trimethoxyl silyl propylmethacrylate (TSPMA) (varied from 10–80% by weight) in methanol along with photoinitator (Darocur-1664). The raw chitosan films were then soaked in the prepared formulations and cured under UV radiation at different intensities to improve the physico-mechanical properties of the films. TS for the photocured chitosan film was 28.0 (MPa) which was 4 times higher compared to the uncured chitosan film. This TS was obtained for the formulation containing 30% silane (TSPMA) at 24th UV pass for 4 min soaking time. The maximum PL of 45.1% was obtained for the same formulation at 24th UV pass for 4 min soaking time. The water uptake and gel content of the photocured chitosan films were also studied. The scanning electron micrographs of the photocured chitosan film showed smooth surface, compact and homogeneous structure.  相似文献   

6.
Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying concentrations. Small amounts of PF slightly enhanced the tensile properties of CNF films. The formulation with the best mechanical properties was CNF/PF films with 8 wt % resin exhibiting tensile stress and toughness of 248 MPa and 26 MJ/m3, respectively. Resin concentrations higher than about 8 % resulted in composites with decreased tensile properties as compared to neat CNF films. The wet strength of the composite films was significantly higher than that of the neat CNF films. The resulting composites showed greater resistance to moisture absorption accompanied by reduced thickness swelling when soaked in water as compared to neat CNF films. The composites also showed decreased oxygen permeability at low humidity compared to neat films, but the composites did not show improved barrier properties at high humidity.  相似文献   

7.
Antimicrobial nanocomposite films containing oregano essential oil (EO) were prepared by solvent casting. Film matrix was composed of supramolecular poly(lactic acid)–cellulose nanocrystals (PLA–CNC) nanocomposite. Bioactive PLA–CNC–oregano films were prepared by incorporating oregano EO as an antimicrobial agent. Resulting films were then converted into packaging applied on mixed vegetables as a food model and stored for 14 days at 4 °C to determine their antimicrobial capacity against Listeria monocytogenes, their physico-chemical/structural properties and their total phenols (TP) release during storage, in order to evaluate the effect of oregano EO. It was observed the addition of oregano EO did not affect the water vapor permeability (WVP) of films, but increased their elongation at break (Eb) and reduced their tensile strength (TS) and tensile modulus (TM) at day 0. However, TS, TM, Eb and WVP values of control and bioactive films were increased slightly after 14 days of storage. FTIR analysis allowed characterizing the molecular interactions of oregano EO with PLA–CNC matrix via the identification and interpretation of their respective vibration bands. Microbiological analysis of mixed vegetables inoculated with L. monocytogenes (3 log CFU g?1) indicated that PLA–CNC–oregano films induced a quasi-total inhibition of bacteria in vegetables at day 14 and therefore demonstrated a strong antimicrobial capacity in situ. The percentage of TP release from bioactive films was determined by Folin–Ciocalteu’s method and results showed that TP release increased continuously from day 0 to day 14, up to 16.6 % at day 14. These results allowed demonstrating the strong antimicrobial capacity of PLA–CNC–oregano films for food packaging applications in vegetable produce.  相似文献   

8.
In this study, blends of chitosan (Cs) and bisphenol-F-diglycidyl ether (3.80 × 10?3 to 3.80 × 10?2 mol) were cast by the solution route. FT-IR results suggested that chitosan was cross-linked at terminal amino groups through diepoxide linkage. The chitosan films became less flexible and stiffer upon reaction with epoxy. Blending improved percentage elongation (31%) and toughness (10 MPa), whereas Young’s modulus (145 MPa) and tensile strength (45 MPa) were decreased. Extent of weight loss in Cs/BPFDGE was lower (15%) than that of original precursors (chitosan 33%). Moreover, blending of chitosan with BPFDGE increased water absorption properties due to generation of hydrophilic ?OH groups.  相似文献   

9.
Natural and accelerated weathering tests were performed to inspect the effect of antioxidants on low-density polyethylene (LDPE) films used as greenhouse covering materials. The LDPE pellets were extruded and blown into a film using a twin-screw extruder and film blowing machine, respectively. The film with 0.2 wt.% Alkanox-240 (AN-0.2) stabilizer showed the highest tensile strength (11 MPa) among all samples during 90 days of natural as well as accelerated weathering. The elastic modulus of the film with 0.5 wt.% of Good-rite (GR-0.5) increased after weathering from approximately 91.8 to 138.9 MPa, and showed the best performance. Morphological images of the neat LDPE film during weathering showed some cracks and grooves, while those of stabilized films showed fewer cracks. Moreover, the estimation of the rapidity of the accelerated method compared to the natural one was approximately nine times faster in Riyadh during the summer season (June–August). The present study suggests that the addition of antioxidants can improve the tensile strength, stability, and, hence, the effectiveness of these films. The best antioxidants were found to be 0.2 wt.% Alkanox and 0.5 wt.% Good-rite antioxidants.  相似文献   

10.
The conversion of starchy sago (Metroxylon sagu) pith waste (SPW), a lignocellulosic biomass waste, to fermentable sugars under mild conditions had been successfully demonstrated. The optimum depolymerization of SPW was achieved at 2 wt% sample loading which was catalyzed by 100 mM of oxalic acid in the presence of 25 wt% NaCl solution at 110 °C for 3 h. Up to 97% SPW sample was being converted into fermentable sugars with limited formation of by-products after two sequential depolymerization cycles. Both reaction temperature and concentration of oxalic acid were crucial parameters for the depolymerization of SPW which exhibited a high selectivity for the production of glucose over other reducing sugars.  相似文献   

11.
In the quest for biodegradable and environmentally friendly packaging materials, starch-based films have been considered as a potential alternative to address ecological problems that emerged from the use of nonbiodegradable petroleum-based plastics. Thus, this article presents a new biopolymer (sugar palm starch) for the preparation of biodegradable packaging films using the solution-casting technique. The effects of different plasticizer types (glycerol [G], sorbitol [S], and glycerol-sorbitol [GS] combination) with varying concentrations (0, 15, 30, and 45, w/w %) on the dynamic mechanical properties of sugar palm starch (SPS) films were evaluated. It was observed that the storage (E′) and loss modulus (E″) of the plasticized SPS films decrease as plasticizer concentration increases from 15 to 45%. S-plasticized films showed higher storage modulus (1000 MPa) than G (880 MPa) and GS (920 MPa) plasticized films, irrespective of plasticizer concentration.  相似文献   

12.
Thin nanocomposite films of thermoplastic starch, chitosan and cellulose nanofibers (bacterial cellulose or nanofibrillated cellulose) were prepared for the first time by solvent casting of water based suspensions of the three polysaccharides. The role of the different bioploymers on the final properties (thermal stability, transparency, mechanical performance and antimicrobial activity) of the films was related with their intrinsic features, contents and synergic effects resulting from the establishment of interactions between them. Thermoplastic starch displays an important role on the thermal stability of the films because it is the most stable polysaccharide; however it has a negative impact on the mechanical performance and transparency of the films. The addition of chitosan improves considerably the transparency (up to 50 % transmittance for 50 % of chitosan, in respect to the amount of starch), mechanical performance and antimicrobial properties (at least 25 % of chitosan and no more than 10 % of cellulose nanofibers are required to observe bacteriostatic or bactericidal activity) but decrease their thermal stability. The incorporation of cellulose nanofibers had the strongest positive impact on the mechanical properties of the materials (increments of up to 15 and 30 MPa on the Young′s modulus and Tensile strength, respectively, for films with 20 % of BC or NFC). Nonetheless, the impact in thermal stability and mechanical performance of the films, promoted by the addition of chitosan and cellulose nanofibres, respectively, was higher than the expected considering their percentage contents certainly because of the establishment of strong and complex interactions between the three polysaccharides.  相似文献   

13.
Manganese was added as a promoter to investigate physico-mechanical properties of radiation-vulcanized natural rubber latex (RVNRL) films. RVNRL films were prepared by the addition of Mn with the concentration range 0–30 ppm to natural rubber latex and irradiated with various radiation doses (0–20 kGy). Tensile strength, tear strength, and cross-linking density of the irradiated rubber films increased with increasing the concentration of Mn ions as well as radiation doses. In contrast, elongation at break, permanent set, and swelling ratio of the films were decreased under the same conditions. The concentration of Mn ions and radiation doses were optimized and found to be 20 ppm and 12 kGy, respectively. The maximum tensile and tear strengths of irradiated rubber films were observed as 29.12 MPa and 44.78 N/mm, respectively at the optimum conditions. The mechanical properties of the films increased markedly with the addition of Mn until they attained the highest values of 33.88 MPa and 54.77 N/mm, respectively. These enhancements, which reached approximately 20% at the most favorable conditions, can be explained by the effect of transition metals in view of Fajan’s rules regarding the covalent character of ionic bonds and suggest that the higher the difference in charges between cation and anion, the higher the ability to form distortion or polarization of ions.  相似文献   

14.
The mechanical, morphological and biodegradation properties of two types of poly(ε-caprolactone)/sago starch (PCL/sago) composites were investigated i.e. dried granulated sago starch and undried thermoplastic sago starch (TPSS). Thermoplastic starch was extruded with a twin screw extruder model Haake Rheomix (TW100 attached to a Haake Rheometer (Haake Rheodrive 5000). The composites were compounded with a Haake internal mixer (Haake Rheomix 3000) attached to the Haake Rheometer. Tensile properties were determined with the Monsanto Tensometer T10. A Shimadzu UV-160A visible UV spectrophotometer was used to monitor the liberation of carbohydrate as a consequence of starch hydrolysis by α-glucoamylase. Determining the weight loss of composites as well as the acid liberated from PCL also monitored biodegradation. The results indicate that dried granulated sago starch function better as fillers in terms of mechanical properties and the ease of biodegradation. However, TPSS imparted better yield strength to the composites. Poor wetting of starch accounts for the decreased mechanical properties at higher starch concentration as agglomeration occurs. While the rigid granular starch retained their shape in the composites, thermoplastic starch that is surrounded by microvoids is easily deformed due to plasticization.  相似文献   

15.
Abstract

A mixture of starch (36%) poly(ethylene-co-acrylate, ammonium salt) (41%), water (12.5%), urea (8.4%), and poly(ethylene glycol) (M n 4600) (2.1%) were converted to plastic test pieces by extruding (130°C), drying and grinding (25°C), and hot pressing (175°C). After equilibration at ?50% relative humidity and 25°C, the test pieces contained 3.5–4.6% moisture and 2.3% poly(ethylene glycol) (PEG). Among wheat, corn, potato, and rice starches, the wheat starch (WS) blend showed the highest Young's modulus (181.3 MPa), whereas the corn starch (CS) blend had a modulus and elongation that almost matched those of lowdensity polyethylene. When PEG was eliminated from the WS formulation, tensile strength remained constant, but Young's modulus doubled. The modulus decreased continually as test pieces absorbed water up to 27% moisture, but elongation and argon laser light transmittance were optimum at ?12% moisture. Differential scanning calorimetry indicated that PEG formed a solid inclusion complex with amylose upon drying at 60°C, but no complex was detected in dilute alkali by optical rotation.  相似文献   

16.

Four new poly(etherimide)s have been synthesized by reaction with commercially available bisphenol‐A‐(diphthaleic anhydride) (BPADA) with four different kinds of diamines, namely 4,4′‐bis(p‐aminophenoxy‐3,3″‐trifluoromethyl) terphenyl,4,4′‐bis(3″‐trifluoromethyl‐p‐aminobiphenyl ether)biphenyl,2,6‐bis(3′‐trifluoromethyl‐p‐aminobiphenyl ether)pyridine, 2,5‐bis(3′‐trifluoromethyl‐p‐aminobiphenylether)thiopene. The poly(etherimide)s are named as 1a, 1b, 1c and 1d, respectively. The synthesized polyimides show good solubility in various organic solvents. The polyimide films had low water absorption of 0.19–0.30% and low dielectric constant of 2.79–3.1 at 1 MHz. These polyimides showed very high thermal stability with decomposition temperature (5% wt loss) up to 522°C in nitrogen. Transparent thin films of these polyimides exhibited tensile strength up to 97 MPa, a modulus of elasticity up to 1.56 GPa and elongation at break up to 20%.  相似文献   

17.
Commercial wheat gluten (WG) films, hard wheat gluten films and soft wheat gluten films, plasticized with glycerol have been cast from water–ethanol solutions. The effect of aging on various film properties has been investigated. The films were aged for about 6 months at 50% relative humidity and ~25 °C, and the mechanical (tensile strength and the percentage of elongation at break (E b)), thermal (TG and DSC) and Attenuated Total Reflectance (ATR)-FTIR spectral properties have been studied. Changes in the protein structure were determined by ATR-FTIR spectroscopy. Films from soft WG exhibited the highest E b (508%) and the highest TS (6.33 MPa). The TG analysis results show that the moisture content in all three kinds of WG protein films is about 5%. The absence of the glycerol phase transition in DSC curves implies that there is no separate phase containing glycerol in the WG protein-glycerol films with 40% glycerol.  相似文献   

18.
The properties of gelatin–polyvinyl alcohol (G–PVA) blend films were improved by methyl methacrylate (MMA) and γ irradiation for a practical viewpoint. The films were prepared by the casting method, modified by glycerol and MMA monomer, and their mechanical properties were also studied. The gelatin-based films were successfully prepared using γ irradiation (3.1 kGy) and gelatin: PVA = 97:3 (w/w) as optimized. Tensile properties of the films were studied and thermal properties of the films were characterized by thermogravimetric analysis and dynamic mechanical analysis pointed out that MMA treated both gelatin films, and G–PVA blend films showed less thermal degradation than untreated films. In addition, structural and morphological features of the gelatin-based films were examined by Fourier transform infrared and scanning electron microscopy, respectively. The ultimate results of the present study showed remarkable enhancement in tensile properties (> 40%) and a reduction in elongation at break of the films, thanks to the MMA addition and γ irradiation.  相似文献   

19.
The effect of alkali metal magnesium on polymer degradation of physico-mechanical properties of radiation-vulcanized natural rubber latex (RVNRL) films was investigated. RVNRL films were prepared by the addition of Mg of different concentrations (0–30 ppm) to natural rubber latex and irradiation with various radiation doses (0–20 kGy). The radiation doses were optimized (12 kGy), and the adverse effect of Mg was studied against a reference film prepared without metal. Tensile strength, tear strength, and cross-linking density of the irradiated rubber films were decreased with increasing metal ion concentrations and decreasing radiation doses. The mechanical properties of the films were reduced by nearly 10% for 30 ppm Mg ions and at the optimum dose. In contrast, elongation at break, permanent set, and swelling ratio of the films were increased at the same conditions. The maximum tensile and tear strengths of irradiated rubber films without additive were 29.33 MPa and 47.95 N/mm, respectively, at a radiation dose of 12 kGy, and these values were about six times higher than those of blank samples. With the addition of Mg, the corresponding values decrease continuously, and the minimum values were found to be 26.35 MPa and 42.675 N/mm, respectively. The effect of divalent alkali metal on polymer chain scission can be explained by the classical electron concept reported in this article.  相似文献   

20.
Fluorine-doped TiO2 thin films featuring columnar structure were prepared on fluorine-doped tin oxide (SnO2:F) substrate using a sol–gel method. The F doping ratios were varied in the range of 0–8 %. The effect of [F]/[Ti + F] ratio on the structural, morphological, optical, photocatalytic and low-emissivity properties has been investigated in detail. X-ray diffraction studies revealed that all the composited films are mainly composed of anatase TiO2 and rutile SnO2 without other phases. The prepared TiO2:F films possessed the columnar morphology with the single layer thickness ranging from 28 to 31 nm. The best photocatalytic activity was obtained for the films with 4 % F doping ratio which is mainly attributed to the highest crystallization and crystallite size. The transmission and hemispherical emissivity of the composite films could still reach approximately 70 % and 0.20, which match the requirements of the Chinese National Standard (GB/T18915.2-2002), promoting the films for the practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号