首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory selection of salinity for a low salinity water-low salinity surfactant (LS-LSS) process is presented in this paper with systematical investigation on surfactant phase behavior, interfacial tension (IFT), and dynamic retention in porous media with IOS2024 and isoamyl alcohol (IAA) as surfactant system. The results show that 0.4 wt% IOS2024 with 1 wt% IAA can provide ultra-low IFT of 10?3 mN/m at around 3000–4000 mg/L total dissolved solids, but at that salinity range the surfactant retention is very high. The search for an optimum surfactant formulation has to consider solution properties and retention in addition to the low IFT. The salinity for a LS-LSS process should thus not be focused on either optimal salinity or ultra-low IFT, but instead the best choice could be a compromise between the properties in question. The three-phase region, where ultra-low IFT are found, is also associated with high retention values. However, we show that as salinity is increased from a two-phase region with oil solubilized in a water continuous microemulsion, there is a region close to the three-phase boundary which has potential. This region does not give ultra-low, but fairly low (10?2 mN/m in this case) interfacial tensions, and also significantly lower retention.   相似文献   

2.
采用自制的新型磺基甜菜碱两性表面活性剂与相对分子质量2500万的聚丙烯酰胺进行复配,考察了不同温度和矿化度条件下,聚合物对复配溶液表面、界面性能的影响。 采用滴体积法测定了溶液的表面张力,结果表明,加入聚合物使溶液的临界胶束浓度增大,且复配溶液的表面张力大于单独表面活性剂溶液的表面张力。 当聚合物浓度一定,增大溶液矿化度时,体系表面张力增大。 用旋滴型界面张力仪测定了溶液的界面张力,结果表明,增大聚合物浓度,油水界面张力增大,增大溶液矿化度,油水界面张力有所升高。 聚合物质量浓度为1.5 g/L,表面活性剂质量浓度为0.3 g/L时,可使胜利油田孤岛原油和孤东原油的油水界面张力达到超低数量级(10-3 mN/m)。 用分水时间法测定了溶液的乳化性能,结果表明,聚合物浓度增大,分水时间延长,并考察了75、85和95 ℃条件下体系的乳化性能,温度越高,分水时间越短。  相似文献   

3.
The synthesis and use in enhanced oil recovery applications of a novel CO2-philic surfactant derived from maleic anhydride and 2-butyl-1-octanol is reported. The synthesis involved the esterification of maleic anhydride to produce diester followed by sulfonation of the esterified product. The esterification reaction parameters were optimized for the maximum yield of 98.4%. By employing a silica sulfuric acid catalyst, the reaction kinetics of esterification were also investigated. The activation energy was found to be 45.58 kJ/mol. The sulfonation reaction of the esterified product was performed by using sodium bisulfite, and a yield of 82% of surfactant was achieved. The synthesized surfactant lowered the interfacial tension between CO2/brine to 3.1 mN/m and effectively reduced the CO2 mobility. This surfactant has a great potential to be used for CO2 mobility control for CO2?EOR applications.   相似文献   

4.
In this work, formations of water-in-diesel fuel nanoemulsions using water/mixed nonionic surfactant/diesel fuel system has been studied. The high-energy emulsification method was used to form three emulsions using different water contents: 5, 10, and 14% (v/v) namely; E1, E2, and E3, respectively. These nanoemulsions were stabilized with emulsifiers having different hydrophilic lipophilic balance (HLB), namely, Span 80 (HLB = 4.3), Emarol 85 (HLB = 11), and their mixture (SE) with HLB = 10. The effect of water on the droplet size formation has been investigated. The interfacial tension and thermodynamic properties of the individual and emulsifiers blends have been studied. The interfacial tension (γ) measurements at 30°C were used to determine the critical micelle concentration (CMC) and surface active properties of these emulsifiers. The water droplet sizes were measured by dynamic light scattering (DLS). From the obtained data, it was found that mean sizes between 19.3 and 39 nm were obtained depending on the water content and concentration of blend emulsifiers (SE). Also, the results show that the interfacial tension (γ) gives minimum value (10.85 mN/m) for SE comparing with individual emulsifier (17.13 and 12.77 mN/m) for Span 80 and Emarol 85, respectively. The visual inspection by transmission electron microscopy showed that the obtained results support the data obtained by dynamic light scattering.  相似文献   

5.
It is shown that results of surface and interfacial tension measurements can be used to predict the type of micelles and of liquid crystalline phases which are formed in binary and ternary surfactant solutions. In particular it is possible to predict the position of l.c. cubic phases in ternary systems consisting of surfactant, hydrocarbon and water. Data to demonstrate the conclusions were obtained on the surfactants Alkyltrimethylammoniumbromides, Alkyldimethylaminoxides and Alkyldimethylphosphinoxides. It was found that the interfacial tension of a dilute micellar solution against a reference hydrocarbon is a most sensitive and indicative parameter for the prediction of the different structures. Large changes of the interfacial tension were observed for the three systems having the same hydrocarbon chainlength. The value of the interfacial tension directly reflects also the amount of hydrocarbon which can be solubilized in the micellar solution. Interfacial tensions larger than 1mN/m are indicative of globular micelles while interfacial tensions between 0.1 and 1 mN/m indicate the formation of rods. Values below 0.1 mN/m indicate disclike micelles or lamellar phases.

The interfacial tension depends somewhat on the kind of hydrocarbon which is used for the measurements. It is observed that for several surfactant solutions the interfacial tension passes through a shallow minimum when the chainlength of the hydrocarbon is increased from six to sixteen.  相似文献   

6.
The influence of synergistic interaction between sodium dodecylsulfate (SDS) and N,N-dimethyldodecan-1-amine oxide (DDAO) on their adsorption at air/water and solid/water interfaces at 20°C is investigated. The critical micelle concentration values obtained from surface tension measurements indicated strong synergism between SDS and DDAO, according to regular solution model. The excess surface concentration (Γ) and the minimum occupied area by single and mixed surfactant monomers (Amin) at liquid/air interface were also calculated. The adsorption onto the activated charcoal and silica was then measured to find out the correlation between surfactant synergism and their adsorption at solid/water interface. The amounts of surfactant adsorbed onto 1 wt% activated charcoal follow the trend: SDS/DDAO > DDAO > SDS. SDS molecules do not adsorb onto 5 wt% silica substrate, while SDS/DDAO mixed system was found to have the highest adsorption behavior. The obtained indicate that SDS can be removed from water by mixing it with amphoteric surfactant.  相似文献   

7.
8.
It was found that the interface tension between water and alkenyl succinic anhydride (ASA) was significantly reduced by polyaluminum sulfate (PAS), increased considerably though by TiO2 nanoparticle. PAS with basicity of 0.75 (PAS-0.75) reduced the interface tension to a larger extent than PAS with basicity of 0.3 (PAS-0.3). By reducing interface tension with PAS-0.75, ASA-in-water emulsion bearing fusiform geometries was constructed. The emulsion stabilized by PAS-0.3 and TiO2 nanoparticle bore spherical shapes with the exception when mass fraction of TiO2 nanoparticle was low, in which case fused nonspherical drops were formed. Forming nonspherical emulsion crucially depends on ASA-water interface tension, where a critical interface tension was identified to be 0.6–0.7 mN/m. The fusiform geometries were transformed into spherical shapes when interface tension was higher than 0.7 mN/m. Both the lowering mechanism of the interface tension and the formation mechanism of the fusiform emulsion were proposed.   相似文献   

9.
采用动态激光光散射及环境扫描电镜研究了羧甲基纤维素系列高分子表面活性剂与大庆原油形成超低界面张力的机理.结果表明,CMC系列高分子表面活性剂具有与低分子量表面活性剂相比拟的表/界面活性,其水溶液的表面张力可达2835mN/m,界面张力达到10-110mN/m.碱的加入可显著降低高分子表面活性剂与原油的界面张力,在适当条件下界面张力达到超低值(10-3mN/m),可望作为三次采油的驱油剂.等效烷烃模型研究表明,用碱与原油酸性组分的作用来解释碱能使界面张力下降至超低值的传统观点是不完善的,加入碱能使高分子表面活性剂胶束解缔,胶束数量增多,胶束粒径减小,单分子自由链增加,有利于高分子表面活性剂向界面迁移和排布,这是高分子表面活性剂和碱复配体系与原油界面张力下降至超低值的主要原因.  相似文献   

10.
11.
粘性高分子表面活性剂的合成研究   总被引:1,自引:0,他引:1  
利用羟乙基纤维素(HEC)与1,2-环氧十八烷(EO-18)反应制备粘性高分子表面活性剂(EOHEC),探索了不同条件对产物性能的影响规律。研究发现,原料配比、溶胀时间、反应温度是影响EOHEC粘度性能的重要因素。控制合适条件能使HEC被EO-18接枝的程度达到最佳,从而使EOHEC靠主链的水溶性伸展作用及支链的疏水缔合作用形成大的结构单元,提高其粘性,另外,主链的亲水作用及支链的疏水作用,有效地保证了EOHEC水溶液的表面活性。  相似文献   

12.
With the cheap and abundant resource of alkali lignin as feedstock, surfactants for enhanced oil recovery were synthesized by amination and alkylation reaction of lignosulfonate. The effects of amination conditions, including the ratio of raw materials, amination reagent, temperature, and reaction time, on nitrogen contents and surface tension of the surfactants were investigated. The results showed that ethylenediamine was more suitable for amination, and the molar ratio of alkali lignin, ethylenediamine, and formaldehyde was 1:2:1.5 at 80°C for 5 hours. The structure of synthesized products was characterized by Fourier transform infrared spectrometry. The HLB value of synthesized product was 10. The interfacial tension between Daqing crude oil and synthetic water could be decreased to 10?2 mN/m with synthesized surfactant and NaOH at 45°C. Moreover, the effects of molecular weight of surfactants on interfacial tension were also studied. The synthesized surfactant (Mw > 10,000) showed a better interfacial activity on Daqing crude oil.  相似文献   

13.
Wettablity alteration of rock surface is an important mechanism for surfactant-based enhanced oil recovery (EOR) processes. Two salt and temperature-tolerant surfactant formulations were developed based on the conditions of high temperature (97–120°C) and high salinity (20 × 104 mg/L) reservoirs where a surfactant-based EOR process is attempted. Both the two sufactant formulations can achieve ultralow interfacial tension level (≤10?3 mN/m) with crude oil after aging for 125 days at reservoir conditions. Wettability alteration of core slices induced by the two surfactant formulations was evalutated by measuring contact angles. Core flooding experiments were carried out to study the influence of initial rock wettabilities on oil recovery in the crude oil/surfactant/formation water/rock system. The results indicated that the two formulations could turn oil-wet core slices into water-wet at 90–120°C and 20 × 104 mg/L salinity, while the water-wet core slices retained their hydrophilic nature. The core flooding experiments showed that the water-wet cores could yield higher oil recovery compared with the oil-wet cores in water flooding, surfactant, and subsequent water flooding process. The two surfactant formulations could successfully yield additional oil recovery in both oil-wet and water-wet cores.  相似文献   

14.
Hydroxyl sulfobetaines with hexadecyl-, octadecyl-hydrophobic chain and an industrial product hydroxyl sulfobetaine were synthesized from analytical-grade and industrial-grade tertiary amine, respectively. The dilational properties and surface tension of the three surfactants at the water-air interface were investigated by drop shape analysis and ring method. The influences of oscillating frequency and bulk concentration on dilational properties were explored. The experimental results show that the dilational module of octadecyl-hydroxyl sulfobetaine was higher than hexadecyl hydroxyl sulfobetaine and the dilational elastic component of the three surfactants were higher than dilational viscous component. Furthermore, the dilational elastic component of mixed surfactant system shows two maxima in a lower concentration than that of single surfactant system. As a result, the surface tension of mixed surfactant system reaches to minimum value in a lower concentration compared with single surfactant system. The simulation results show that the hydrophobic chains in the mixed betaine solution were more curled than in single-component betaine solution ascribed to stronger interaction among different hydrophobic chains, resulting to a more compact interfacial film.  相似文献   

15.
In order to study the interfacial activity of the anionic-nonionic surfactant, five nonyl phenol polyoxyethylene ether carboxylates were synthesized and mass spectra were used to characterize their structures. The tensions of the anionic–nonionic surfactant aqueous solutions against crude oil were measured and the effects of the surfactant structure, concentration, and salinity on the interfacial activities were discussed. It was shown that nonyl phenol polyoxyethylene (6) ether carboxylate can produce ultralow interfacial tension when the concentrations are not lower than 0.10%, exhibiting a high interfacial activity and a good anti-dilution resistance. Moreover, it was proved that there exists synergism between NaCl and MgCl2 (or CaCl2), which is crucial to achieve the ultralow interfacial tension.  相似文献   

16.
We have studied the melting of polymeric amphiphilic micelles induced by small-molecule surfactant and explained the results by experimental determination of the interfacial tension between the core of the micelles and the surfactant solutions. Poly(n-butyl acrylate-b-acrylic acid) (PBA-b-PAA) amphiphilic diblock copolymers form kinetically frozen micelles in aqueous solutions. Strong interactions with surfactants, either neutral or anionic [C12E6, C6E4, sodium dodecyl sulfate (SDS)], were revealed by critical micelle concentration (cmc) shifts in specific electrode and surface tension measurements. Since both polymer and surfactant are either neutral or bear negative charges, the attractive interactions are not due to electrostatic interactions. Light scattering, neutron scattering, and capillary electrophoresis experiments showed important structural changes in mixed PBA-b-PAA/surfactant systems. Kinetically frozen micelles of PBA-b-PAA, that are hardly perturbed by concentration, ionization, ionic strength, and temperature stresses, can be disintegrated by addition of small-molecule surfactants. The interfacial energy of the PBA in surfactant solutions was measured by drop shape analysis with h-PBA homopolymer drops immersed in small-molecule surfactant solutions. The PBA/water interfacial energy gammaPBA/H2O of 20 mN/m induces a high energy cost for the extraction of unimers from micelles so that PBA-b-PAA micelles are kinetically frozen. Small-molecule surfactants can reduce the interfacial energy gammaPBA/solution to 5 mN/m. This induces a shift of the micelle-unimer equilibrium toward unimers and leads, in some cases, to the apparent disintegration of PBA-b-PAA micelles. Before total disintegration, polymer/surfactant mixtures are dispersions of polydisperse mixed micelles. Based on core interfacial energy arguments, the disintegration of kinetically frozen polymeric micelles was interpreted by gradual fractionation of objects (polydisperse dispersion mechanism), whereas the disintegration of polymeric micelles in a thermodynamically stable state was interpreted by an exchange between a population of large polymer-rich micelles and a population of small surfactant-rich micelles (bidisperse dispersion mechanism). Finally, in our system and other systems from the literature, interfacial energy arguments could explain why the disintegration of polymer micelles is either partial or total as a function of the surfactant type and concentration and the hydrophobic block molar mass of the polymer.  相似文献   

17.
Various experimental methods were used to investigate interaction between polymer and anionic/nonionic surfactants and mechanisms of enhanced oil recovery by anionic/nonionic surfactants in the present paper. The complex surfactant molecules are adsorbed in the mixed micelles or aggregates formed by the hydrophobic association of hydrophobic groups of polymers, making the surfactant molecules at oil-water interface reduce and the value of interfacial tension between oil and water increase. A dense spatial network structure is formed by the interaction between the mixed aggregates and hydrophobic groups of the polymer molecular chains, making the hydrodynamic volume of the aggregates and the viscosity of the polymer solution increase. Because of the formation of the mixed adsorption layer at oil and water interface by synergistic effect, ultra-low interfacial tension (~2.0?×?10?3 mN/m) can be achieved between the novel surfactant system and the oil samples in this paper. Because of hydrophobic interaction, wettability alteration of oil-wet surface was induced by the adsorption of the surfactant system on the solid surface. Moreover, the studied surfactant system had a certain degree of spontaneous emulsification ability (D50?=?25.04?µm) and was well emulsified with crude oil after the mechanical oscillation (D50?=?4.27?µm).  相似文献   

18.
生物基表面活性剂由于其可再生资源和优异的表面/界面性质吸引了越来越多的关注。本文以可再生的油酸为原料,通过四步反应,制备了新型生物基支链表面活性剂,并评价了其表/界面性质、润湿性和生物降解性能。该新型生物基支链表面活性剂为4-(1-十七烷基)苯磺酸钠(9ΦC17S),依次经过烷基化反应、脱羧反应、磺化反应和中和反应而制得。其化学结构已通过电喷雾质谱、红外光谱和核磁共振波谱得以确认。4-(1-十七烷基)苯磺酸钠展现出良好的表/界面张力,临界胶束浓度(CMC)为317.5 mg·L-1,CMC处的表面张力为32.54 mN·m-1,当水溶液中碳酸钠浓度为8.48×104 mg·L-1、4-(1-十七烷基)苯磺酸钠浓度为8.36×104 mg·L-1时,油水的界面张力约为10-2 mN·m-1。此外,4-(1-十七烷基)苯磺酸钠在生物降解性和润湿性方面也显示出了良好的性能,最终生物降解评分为2.99,0.500 g·L-1 9ΦC17S溶液的气液固接触角为63.08°。该新型生物基表面活性剂丰富了以可再生资源为原料的生物基表面活性剂的结构多样性。  相似文献   

19.
A water-soluble derivative of chitosan, carboxymethylchitosan (CMCH), was mixed with alkyltrimethylammoniumbromides (CmTAB) and was studied on the adsorption at air/water interface using equilibrium and dynamic surface tension method. The effects of surfactant and polymer concentrations, surfactant chain length, as well as pH of solution were investigated. Addition of the surfactants remarkably promotes the polymer adsorption. Increasing any one of surfactant concentration, surfactant chain length, and pH will facilitate the adsorption of the mixture whereas little effects of polymer concentration were observed. The results are explained in terms of the interaction between CMCH and CmTAB under different conditions.  相似文献   

20.
Cinnamoyl alginate microspheres were prepared using the water droplets of W/O emulsions as a template. Cinnamoyl alginates having variable content of the cinnamoyl group were prepared by a condensation reaction. The photo-dimerization degree of the cinnamoyl group increased as the molar ratio of pyranose unit/cinnamoyl group increased from 1:0.043 to 1:0.18. The air/water interfacial activity of cinnamoyl alginate also increased with increasing the molar ratio. Aqueous solution of cinnamoyl alginate was dispersed in mineral oil to obtain W/O emulsion. UV light (254 nm, 6 W) was irradiated to the emulsion to dimerize the cinnamoyl groups, and CaCl2 was added to the emulsion to cross-link the cinnamoyl alginate. The surface of UV-treated microspheres was rougher than that of UV-untreated microspheres, possibly due to the photo-dimerization-induced tension on the alginate chains. The release degrees for 24 hours of fluorescein isothiocyanate-dextran (FITC-dextran; MW 4000) from UV-treated microspheres were markedly higher than those from UV-untreated ones. This is possibly due to the intramolecular dimerization of cinnamoyl group. The UV irradiation-induced percentage increase in the maximum release degree was greater as the content of cinnamoyl group was higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号