首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel core–shell-structured Pluronic-based nanocapsules with thermally responsive properties were successfully prepared using a modified emulsification/solvent evaporation method. The nanocapsules were constructed through the cross-linking reaction between p-nitrophenyl-activated Pluronic F127 and hyaluronic acid (HA) (named Pluronic F127/HA) or poly(ε-lysine) (PL) (named Pluronic F127/PL) at the organic/aqueous interface. The formation, size, and thermal responsiveness of the nanocapsules were characterized by 1H NMR, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The resultant shell-cross-linked nanocapsules exhibit a larger volume transformation (26 times change in volume for Pluronic F127/HA and 31 times for Pluronic F127/PL) over a temperature range of 4–37 °C because of the temperature-dependent dehydration of cross-linked Pluronic F127 polymer chains. The nanocapsules are about 72?±?4 nm (polydispersity index [PDI]?=?0.08) for Pluronic F127/PL (69?±?5 nm, PDI?=?0.10 for Pluronic F127/HA) at 37 °C with narrow size distribution and expand to about 226?±?23 nm (PDI?=?0.34) for Pluronic F127/PL (206?±?20 nm, PDI?=?0.3) for Pluronic F127/HA at 4 °C with broad size distribution in aqueous solutions. The nanocapsules were used to encapsulate and control the release of doxorubicin hydrochloride (DOX·HCl) in aqueous solution. DOX·HCl was physically encapsulated in the nanocapsules using a soaking–freeze-drying–heating procedure. The release curve and release kinetics disclosed that the thermally responsive hollow nanocapsules are good carries for drug delivery.  相似文献   

2.
Cinnamoyl alginate microspheres were prepared using the water droplets of W/O emulsions as a template. Cinnamoyl alginates having variable content of the cinnamoyl group were prepared by a condensation reaction. The photo-dimerization degree of the cinnamoyl group increased as the molar ratio of pyranose unit/cinnamoyl group increased from 1:0.043 to 1:0.18. The air/water interfacial activity of cinnamoyl alginate also increased with increasing the molar ratio. Aqueous solution of cinnamoyl alginate was dispersed in mineral oil to obtain W/O emulsion. UV light (254 nm, 6 W) was irradiated to the emulsion to dimerize the cinnamoyl groups, and CaCl2 was added to the emulsion to cross-link the cinnamoyl alginate. The surface of UV-treated microspheres was rougher than that of UV-untreated microspheres, possibly due to the photo-dimerization-induced tension on the alginate chains. The release degrees for 24 hours of fluorescein isothiocyanate-dextran (FITC-dextran; MW 4000) from UV-treated microspheres were markedly higher than those from UV-untreated ones. This is possibly due to the intramolecular dimerization of cinnamoyl group. The UV irradiation-induced percentage increase in the maximum release degree was greater as the content of cinnamoyl group was higher.  相似文献   

3.
The unit‐cell size and pore diameter as functions of temperature are investigated in the syntheses of FDU‐12 silicas with face‐centered cubic structure templated by Pluronic (PEO‐PPO‐PEO) block copolymer micelles swollen by toluene. The temperature range in which the unit‐cell size and pore size strongly increase as temperature decreases is correlated with the critical micelle temperature (CMT) of the surfactant. While Pluronic F127 affords a wide range of unit‐cell parameters (28–51 nm) and pore diameters (16–32 nm), it renders moderately enlarged pore sizes at 25 °C. The use of Pluronic F108 with higher CMT affords FDU‐12 with very large unit‐cell size (~49 nm) and large pore diameter (27 nm) at 23 °C. Large unit‐cell size (40–41 nm) and pore size (22 nm) were obtained even at 25 °C. The application of Pluronics F87 and F88 with much smaller molecular weights and higher CMTs also allows one to synthesize FDU‐12 with quite large unit‐cell parameters and pore sizes at room temperature. The present work demonstrates that one can judiciously select Pluronic surfactants with appropriate CMT to shift the temperature range in which the pore diameter is readily tunable.  相似文献   

4.
The effect of the aggregation state of Pluronic copolymer (PEO100–PPO65–PEO100, F127) and the concentration of hydrophilic modified ibuprofen (Ibuprofen–PEG800, IP800) on the interaction between F127 and IP800 was systematically investigated by nuclear magnetic resonance, dynamic light scatter (DLS), surface tension, and freeze-fractured transmission electron microscopy. In the solution of F127 unimers (5 °C), F127 unimers tended to wrap around IP800 micelles, and the binding model of F127 unimers to IP800 micelles transferred from wrapping around to partly threading through with increasing IP800 concentration. The latter binding model was straightly confirmed by nuclear Overhauser enhancement spectroscopy. As the aggregation state of F127 is in the beginning of the micellization (20 °C), the addition of IP800 significantly promoted the micellization of F127 to form the F127/IP800 complex with F127 micelles as the skeleton called the F127–micelle complex. The sudden decrease of the size obtained from DLS stemmed from the disruption of the F127–micelle complex and accompanying rehydration of PPO which is weaker compared with refs. The amount of IP800 to disintegrate the F127–micelle complex increased in the F127–micelle-dominated solution (40 °C) compared to that at 20 °C.  相似文献   

5.
Monoolein (MO) cubosomes were investigated in terms of in vitro skin permeation enhancer of KIOM-MA-128 (MA-128), a natural product known to be efficacious against atopic dermatitis. First, an aqueous suspension of MA-128 was prepared by homogenizing the powder in Pluronic F-127 (a dispersant) solution in water. The Pluronic F-127 concentration and the pH have no significant effect on the size and the zeta potential of MA-128 particles. The mean diameters and the zeta potentials fell within 1000–1500 nm and ?10 to ?20 mV, respectively. The sedimentation rate of the particles was lower at a higher concentration of the polymeric dispersant, possibly because the polymeric surfactant can act as a spring and push away approaching particles. The size of MO cubosomes was tens to hundreds of nanometers and exhibited black and white stripes. Cumulative amount of MA-128 permeated through hairless mouse skin was obviously higher when the cubosome was included in the MA-128 suspensions. However, the cumulative permeation amount was inversely proportional to the content of cubosomes, when the contents of cubosome in the suspension increased from 0.5% to 2.0% with MA-128 concentrations kept constant (2%).  相似文献   

6.
A thermo-responsive separation matrix, consisting of Pluronic F127 tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide), was used to separate DNA fragments by microchip electrophoresis. At low temperature, the polymer matrix was low in viscosity and allowed rapid loading into a microchannel under low pressure. With increasing temperatures above 25°C, the Pluronic F127 solution forms a liquid crystalline phase consisting of spherical micelles with diameters of 17–19 nm. The solution can be used to separate DNA fragments from 100 bp to 1500 bp on poly(methyl methacrylate) (PMMA) chips. This temperature-sensitive and viscosity-tunable polymer provided excellent resolution over a wide range of DNA sizes. Separation is based on a different mechanism compared with conventional matrices such as methylcellulose. To illustrate the separation mechanism of DNA in a Pluronic F127 solution, DNA molecular imaging was performed by fluorescence microscopy with F127 polymer as the separation matrix in microchip electrophoresis. Figure Temperature dependence of the viscosity of 20% w/w Pluronic F127 solution in 1xTBE buffer. Dotted approximates resultant curve.  相似文献   

7.
The required hydrophilic-lipophilic balance (HLB) of an oily substance indicates the HLB of the surfactants required to prepare a stable emulsion using the oil. This study utilizes empirical method to calculate required HLB (RHLB) of Capryol 90 using surfactant blends (Span 20, Tween 20, vitamin E TPGS, Pluronic F68, Span 60, and Tween 80). The methods used were assessment of degree of creaming after centrifugation and after shelf storage for 28 days at room temperature, turbidimetric method, accelerated stability study, and droplet size analysis. The droplet size was found to be in the range of 15 to 2 µm and v/v% separation after centrifugation was found to be 0–82%. The RHLB for Capryol 90 was found to be 15. The effect of various surfactant blends was investigated. Results revealed that a blend of tocopherol polyethylene glycol succinate (TPGS) and Pluronic F68 gave the most stable emulsion for Capryol 90.  相似文献   

8.
Thermally induced phase separation technique was utilized to fabricate biodegradable poly(l ‐lactic acid) (PLLA) macrocellular foams which were capable of being applied in tissue engineering. The block copolymer Pluronic F127 composed of (polyethyleneoxide)‐(polypropyleneoxide)‐(polyethyleneoxide) [(PEO)‐(PPO)‐(PEO)] was used as a porogen. Water/dioxane mixtures with different volume ratios were used as solvents. The addition of Pluronic F127 could induce an appearance of large pores (50–200 μm) besides small pores (10–20 μm) or a change from a solid–liquid phase separation to a liquid–liquid phase separation. The role of Pluronic F127 depends on the water/dioxane ratios in the PLLA/dioxane/water system. The X‐ray diffraction patterns and porosity measurement results showed that Pluronic F127 was crystallized and existed on the pore wall. The effect of Pluronic F127 on changing pore structure is attributed to the occurrence of the interaction of the lipophilic PPO blocks in Pluronic F127 with PLLA clews, consequently, this results in PLLA aggregation and early phase separation on cooling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Diffusion coefficients of different aggregates in aqueous solutions formed by an amphiphilic block copolymer, Pluronic F127 (F127), were determined by cyclic voltammetry, and the critical micelle concentration (CMC, 4.31 × 10?4 mol L?1) of F127 was obtained. The added n‐butanol facilitates the formation of micelles from the monomers of F127 and makes the critical micelle temperature (CMT) of F127 solutions decrease. The diffusion coefficient of the F127 micelles decreases relatively fast at first with increasing n‐butanol and then the decreasing trend slows after the solubilization of n‐butanol in micelles reaches maximum.  相似文献   

10.
Thermo- and photo-responsive emulsions were prepared using mineral oil as an oil phase and a thermo- and-photo-sensitive polymer as an emulsifier. Hydroxyethyl acrylate (HEA) was copolymerized with Coumaryl acrylate (CA) and 2-Ethylhexyl acrylate (EHA) by a free radical reaction with the content of CA in the reaction mixture being varied (0, 0.5, 1, 2, 3 mol%) and the content of EHA being kept constant (2 mol%). CA was used as a photo-responsive comonomer and EHA was used as a hydrophobic comonomer to endow the copolymer with amphiphilicity. The copolymers prepared using the HEA/CA/EHA mixture where CA content was 1, 2, 3 mol% exhibited a phase transition in the range of 20°C– 45°C, and the phase transition temperature decreased with increasing the content. The CA of the copolymers was readily dimerized under the irradiation of UV (365 nm. 400 W) and the dimerization degree was 27%–47% in 60 min. The droplet size of emulsions significantly increased with increasing the temperature from 27°C- 50°C, possibly due to the thermal contraction of the copolymers. Also, the size markedly increased by 60 min-irradiation of the UV light, possibly because of the photo collapse of the copolymers.  相似文献   

11.
Iron oxide particles were micronized by supercritical carbon dioxide (CO2) as an antisolvent in a batch gas antisolvent (GAS) process. In the present study, the feasibility of GAS process to micronize the iron oxide particles using dimethyl sulfoxide (DMSO) as a solvent was investigated. In this direction, particle size and morphology changes were investigated with changing solution pressure (80–150 bar), temperature (308.15–328.15 K), and concentration (1.5–6 g/l). Based on the different experimental conditions, the particle size of the original iron oxide was decreased in the range of 17.25 to 4.23 µm, which shows a the success of the GAS process to reduce the particle size of the intact iron oxide particles. Simultaneously, morphology changes were observed starting from the irregular morphology for synthesized particles to more regular shapes that included fused and spherical-fused particles.  相似文献   

12.
Ti(IV)-substituted calcium hydroxyapatite (TiHap) particles were prepared by aging Ca(OH)2, TiCl4, and sodium triphosphate (sodium tripolyphosphate, Natpp: Na5P3O10) mixed solution at 100 °C for 18 h. The ellipsoidal secondary TiHap particles with ca. 100~150 nm in length composing by aggregation of small ellipsoidal primary particles with ca. 20 nm in length were produced at atomic ratio of Ti/(Ca+Ti) [XTi]≦0.2. The in situ IR spectra of these TiHap particles exhibited very small bulk OH? band at 3,570 cm?1. This result indicated that the TiHap particles were formed by aggregation of fine primary particles and OH? ions along with c-axis in the primary particles were disordered. The TiHap particles with Ca/P atomic ratio larger than theoretical value of 1.67 did not exhibit surface P–OH groups at 3,659 and 3,682 cm?1. The diffuse reflectance UV spectra of TiHap particles revealed that these particles have a UV absorption property, especially fabricated at XTi?=?0.1. The particles prepared at XTi?=?0.6 and 0.8 were amorphous and nanoparticles with 5~10 nm in diameter, but those precipitated at XTi?=?1.0 were poorly crystallized anataze-type TiO2 nanoparticles.  相似文献   

13.
Thermo- and UV photo-triggerable monoolein (MO) cubic phases were developed by incorporating poly(hydroxyethyl acrylate-co-coumaryl acrylate-co-octadecyl acrylate) (P(HEA-CA-ODA)) in the cubic phases. P(HEA-CA-ODA)s, for which the HEA/CA/ODA molar ratio was 98.6:0:1.4, 96.7:2.0:1.3, 96.2:2.6:1.2, 95:3.8:1.2, and 92.8:6.1:1.1, calculated on the 1H NMR spectra, were prepared by a free radical reaction. The air–water interfacial tension was inversely proportional to the CA content of the copolymer. The copolymers for which the CA content was 2.6%, 3.8%, and 6.1% exhibited their phase transition temperature in an aqueous solution in the temperature range from 25°C to 40°C. As the CA content was more, the temperature sensitivity was higher and the phase transition temperature was lower. The UV light (254 nm, 6 W)-induced dimerization degree of CA was proportional to its content in the copolymers. The release of fluorescein isothiocyanate-dextran from cubic phases containing P(HEA/CA/ODA)s was promoted by UV light irradiation, possibly due to the photo-induced collapse of the copolymer chains. The release from cubic phases incorporating copolymers, for which the CA content was 3.8% and 6.1%, was enhanced by increasing the releasing medium temperature from 23°C to 37°C, possibly due to the thermal collapse of the copolymer chains.  相似文献   

14.
Novel Pluronic/heparin composite nanocapsules that exhibit a thermally responsible swelling and deswelling behavior were synthesized. Pluronic F-127 preactivated with p-nitrophenyl chloroformate at its two terminal hydroxyl groups was dissolved in a methylene chloride phase. The organic phase was dispersed in an aqueous phase containing heparin. At an organic/aqueous interface, Pluronic-cross-linked heparin nanocapsules were produced. They exhibited a 1000-fold volume transition (ca. 336 nm at 25 degrees C; ca. 32 nm at 37 degrees C), and a reversible swelling and deswelling behavior when the temperature was cycled between 20 and 37 degrees C. The reversible volume transition of Pluronic nanocapsules was caused by micellization and demicellization of cross-linked Pluronic polymer chains within the nanocapsule structure in response to temperature. The morphological characters were investigated with transmission electron microscopy and small angle neutron scattering. Pluronic/heparin nanocapsules had an aqueous fluid-filled hollow interior with a surrounding shell layer below the critical temperature, but they became a collapsed core/shell structure similar to that of Pluronic micelles above it.  相似文献   

15.
Nano size-ranged poly(d,l-lactic acid) (PLA) particles were obtained from 2 and 10 w% PLA solution in water-saturated ethyl acetate by the emulsification-diffusion method. An increase in the PLA solution concentration resulted in an increase of the particle mean size from ca 260 nm to 530 nm with a broadening of the distribution. After fractionation by centrifugation, the particle mean size was 980 nm. The Pluronic F68 used in the formulations at concentration ranging from 0.5 to 5% w/v, was shown to adsorb at the interface at 0.5 mg/m 2 for both particle sizes. The molecular occupied area of 24 nm 2/molecule suggested an expanded conformation of the surfactant at the interface, though an incomplete coverage could not be excluded. Coagulation kinetics measurements revealed a critical coagulation concentration (CCC) of 1.5 M sodium chloride, indicating a steric stabilization of the colloids by the adsorbed triblock copolymer. Nonetheless, variations in zeta potential with increasing salt concentration were observed, suggesting that the surface carboxylate groups were still accessible for further modifications.  相似文献   

16.
Microparticles comprising of cinnamoyl gelatin (type A) (CA-GelA), cinnamoyl gelatin (type B) (CA-GelB), cinnamoyl Pluronic F127 (CA-Plu), and cinnamoyl poly(β-cyclodextrin) (CA-P(βCD)) were prepared as a carrier for doxorubicin (DOX). Folic acid (FA) was covalently attached to CA-GelA as a targeting molecule for cancer cells. The covalent attachment of FA was confirmed by 1H-NMR spectroscopy. On the TEM micrographs, the microparticles were almost circular and they were a few hundreds of nanometers in diameter. The release at pH7.4 of DOX from microparticle/DOX suspension was more extensive when the FA content of microparticles was lower and the temperature of release medium was higher. According to the flow cytometric analysis, the lager amount of FA seemed to make the interaction of the microparticle and KB cell more favorable. On confocal laser fluorescence micrograph, the cell treated with microparticle bearing FA showed relatively strong DOX fluorescence, indicating the strong interaction of the microparticle and KB cells.  相似文献   

17.
ZnO/ZnWO4 composite rod-like nanoparticles were synthesized by low-temperature soft solution method at 95 °C with different reaction times (1–120 h), in the presence of non-ionic copolymer surfactant Pluronic F68. Obtained nanoparticles had diameters in the range around 10 nm and length of 30 nm. Optical properties such as reflection and room temperature photoluminescence of obtained samples showed strong dependence on their crystallinity and composition. Photocatalytic activity of ZnO/ZnWO4 nanopowders was checked using photodegradation of selected dyes as model system. Obtained results were correlated with specific surface area, particle sizes, crystallinity and ZnO/ZnWO4 ratio of the samples. As crystallinity of ZnWO4 component in the ZnO/ZnWO4 increase, photocatalytic activity also increases. The main findings can be explained by charge transfer reactions that follow light absorption by ZnO and ZnWO4 in nanocomposite.  相似文献   

18.
Poly(hydroxyethyl acrylate-co-coumaryl acrylate-co-octadecyl acrylate)s [P(HEA-CA-ODA)s], of which HEA/CA/ODA molar ratios were 98.6:0:1.4, 94.5:4.2:1.3, 90.9:7.6:1.4, and 82.5:16.2:1.3, were prepared by a free radical polymerization. CA residue is found to increase the amphiphilicity of the copolymer in the measurement of air/water interfacial activity. The CA residue of copolymers were readily dimerized and de-dimerized under the cyclic irradiation of UV light (365 nm and 254 nm). P(HEA-CA-ODA)s were assembled into microgels in distilled water possibly due to inter-/intramolecular hydrophobic interaction. A higher content of hydrophobic monomer (CA) led to a smaller microgel, possibly due to a short range hydrophobic interaction. The maximum Nile Red release degrees of the microgels in aqueous dimethylsulfoxide (DMSO) solution (10 %) were in the order of UV-untreated?>?UV (365 nm)-treated?>?UV (365 nm and 254 nm)-treated microgels possibly due to the CA dimerization and de-dimerization. The photo-sensitivity in the release was higher when the CA content of the copolymers was higher.  相似文献   

19.
Nanocrystalline rod shaped calcium doped cerium phosphate yellow-green pigment particles having an average length of ~100 nm and aspect ratio 10 even after calcination at 600 °C have been realized through an aqueous sol–gel process. The morphology, particle size and identification of the phase are determined by using different analytical tools such as transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), Fourier-transform IR (FTIR) and X-ray diffraction (XRD). Brunauer–Emmett–Teller (BET) nitrogen adsorption analysis showed the pigment particles are mesoporous texture having specific surface area 42 m2 g?1 and average pore size 153 Å. Thermogravimetric (TG) analysis is used to explain the thermal phase stability of the pigment. UV–Visible spectroscopy and colorimetric analysis are also done. The typical yellow-green color has been obtained even after heating to as low as 600 °C, which is 300 °C lesser than reported. Systematic study on synthesis and effect of temperature on color are presented.  相似文献   

20.
A series of novel liquid crystalline monomers and polymers incorporating phenylbenzoate or phenylcinnamate segments as mesogenic cores have been synthesized to investigate the sensitivity of the photochromic cinnamoyl derivatives and to overcome the defects of the thermal instability of azobenzene. Their liquid crystalline, thermal, and photoinduced properties of all monomers and polymers were characterized. The polymers showed excellent solubility in common organic solvents such as CHCl3, toluene, and DMF and exhibited good thermal stability with decomposition temperatures (Td) at 5% weight loss greater than 340 °C and about 50% weight loss occurred beyond 430 °C under nitrogen atmosphere. The pitch length (about 574 nm) of the synthesized cholesteric polymeric film ( CP2 ) was estimated using scanning electron microscopy. These photochromic polymers exhibited strong UV–vis absorption maxima at about 264 or 320 nm. Moreover, photo induced configurational E/Z isomerization further changed the π‐electron conjugation systems leading to a decrease at the π‐π* transition and an increase in the range of 300 nm to 400 nm for photochromic copolymers. The thermal stability of the Z‐structural segment was confirmed by heating the polymer at 50 °C for over 5 h. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1289–1304, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号