共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometries, growth patterns, relative stabilities and electronic properties of small-sized Pd2Sin and Sin+2 (n = 1–11) clusters are systematically studied using the hybrid density functional theory method B3LYP. The optimised structures revealed that the lowest energy Pd2Sin clusters are not similar to those of pure Sin clusters. When n = 9, one Pd atom in Pd2Si9 completely falls into the centre of the Si outer frame, forming metal-encapsulated Si cages. On the basis of the optimised structures, the averaged binding energy, fragmentation energy, second-order energy difference and highest occupied–lowest unoccupied molecular orbital energy gap are calculated. It is found that the Pd2Si5 and Pd2Si7 clusters have stronger relative stabilities among the Pd2Sin clusters. Additionally, the stabilities of Sin+2 clusters have been reduced by the doping of Pd impurity. The natural population and natural electronic configuration analysis indicated that the Pd atoms possess negative charges for n = 1–11 and there exist the spd hybridisation in the Pd atom. Finally, the chemical hardness, chemical potential, electrostatic potential and polarisability are discussed. 相似文献
2.
Structural,electronic,and magnetic properties in FeAlAu_n(n=1–6)clusters:A first-principles study 下载免费PDF全文
《中国物理 B》2015,(6)
The geometries,electronic and magnetic properties of the trimetallic clusters Fe Al Aun(n = 1–6) are systematically investigated using density functional theory(DFT).A number of new isomers are obtained to probe the structural evolutions.All doped clusters show larger relative binding energies than pure Aun+2partners,indicating that doping with Fe and Al atoms can stabilize the Aun clusters.The highest occupied molecular orbital–lowest unoccupied molecular orbital(HOMO–LUMO) gaps,vertical ionization potentials and vertical electron affinities are also studied and compared with those of pure gold clusters.Magnetism calculations demonstrate that the magnetic moments of Fe Al Aun clusters each show a pronounced odd–even oscillation with the number of Au atoms. 相似文献
3.
4.
J. R. Li Y. W. Mu J. G. Wan F. Q. Song M. Han G. H. Wang 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2011,63(2):201-207
The structures of B n N20 ? n (n = 6?18), the clusters of boron nitride, are investigated by the density functional theory calculations. The structures of the obtained low-lying isomers can be described by the following six prototypes: single ring, double ring, three-ring, graphitic-like sheet, fullerene and others. B10N10 is demonstrated to be the most stable cluster against the nonstoichiometric ones. Nonzero magnetic moments, 1.999, 1.998, 2.000, 3.999 and 1.999μ B respectively, are found in five B n N20?n (n = 6, 7, 11, 12, 13) clusters. Further analysis indicates that the magnetic moment of the B6N14 cluster is mainly originated from the N atoms, while those of others are from the B atoms. The magnetic moment are finally attributed to the interesting issues of the 2p electrons due to the breaking of local symmetries, the change of coordination number, charge distribution and orbital hybridization. 相似文献
5.
Cheng-Gang Li Jin-Hai Gao Jie Zhang Wan-Ting Song Shui-Qing Liu Si-Zhuo Gao 《Molecular physics》2013,111(4):382-394
The structures, stabilities and electronic properties of neutral and anionic B3Sin (n?=?1–17) clusters have been systemically investigated on the basis of density functional theory at the B3LYP/6-311?+?G(d) level and CALYPSO structure prediction method. The structural searches show that three boron atoms tend to form B3 triangle encapsulated into Sin cages with the increasing number of silicon atoms. Most of the lowest energy structures can be derived by using the squashed pentagonal bipyramid structure of B3Si4 and B3Si4? as the major building unit. The relative stabilities are studied based on the calculated binding energies, second-order difference of energies and HOMO–LUMO gaps of the lowest energy structures. In addition, Hirshfeld, natural population analysis, Bader approaches and natural electronic configuration are performed to explore the charge transfer. At last, molecular orbital, magnetic properties, IR, Raman and UV–vis spectra are also, respectively, analysed for providing strong support for essential theoretical and experimental research. 相似文献
6.
The geometrical, electronic, and magnetic properties of small CunFe (n=1–12) clusters have been investigated by using density functional method B3LYP and LanL2DZ basis set. The structural search reveals that Fe atoms in low-energy CunFe isomers tend to occupy the position with the maximum coordination number. The ground state CunFe clusters possess planar structure for n=2–5 and three-dimensional (3D) structure for n=6–12. The electronic properties of CunFe clusters are analyzed through the averaged binding energy, the second-order energy difference and HOMO–LUMO energy gap. It is found that the magic numbers of stability are 1, 3, 7 and 9 for the ground state CunFe clusters. The energy gap of Fe-encapsulated cage clusters is smaller than that of other configurations. The Cu5Fe and Cu7Fe clusters have a very large energy gap (>2.4 eV). The vertical ionization potential (VIP), electron affinity (EA) and photoelectron spectra are also calculated and simulated theoretically for all the ground-state clusters. The magnetic moment analyses for the ground-state CunFe clusters show that Fe atom can enhance the magnetic moment of the host cluster and carries most of the total magnetic moment. 相似文献
7.
The geometrical, electronic, and magnetic properties of small Au n V (n?=?1–8) clusters have been investigated using density functional theory at the PW91 level. An extensive structural search indicates that the V atom in low-energy Au n V isomers tends to occupy the most highly coordinated position and the ground-state configuration of Au n V clusters favors a planar structure. The substitution of a V atom for an Au atom in the Au n +1 cluster transforms the structure of the host cluster. Maximum peaks are observed for the ground-state Au n V clusters at n?=?2 and 4 for the size dependence of the second-order energy differences, implying that the Au2V and Au4V clusters possess relatively higher stability. The energy gap of the Au3V cluster is the largest of all the clusters. This may be ascribed to its highly symmetrical geometry and closed eight-electron shell. For ground-state clusters with the same spin multiplicity, as the clusters size increases, the vertical ionization potential decreases and the electron affinity increases. Magnetism calculations for the most stable Au n V clusters demonstrate that the V atom enhances the magnetic moment of the host clusters and carries most of the total magnetic moment. 相似文献
8.
Geometries,stabilities, and electronic properties analysis in In_nNi~((0,±1)) clusters: Molecular modeling and DFT calculations 下载免费PDF全文
Density functional theory(DFT) with the B3 LYP method and the SDD basis set is selected to investigate In_nNi,In_nNi~-, and In_nNi~+ (n = 1–14) clusters. For neutral and charged systems, several isomers and different multiplicities are studied with the aim to confirm the most stable structures. The structural evolution of neutral, cationic, and anionic In_nNi clusters, which favors the three-dimensional structures for n = 3–14. The main configurations of the In_nNi isomers are not affected by adding or removing an electron, the order of their stabilities is also nearly not affected. The obtained binding energy exhibits that the Ni-doped In_(13) cluster is the most stable species of all different sized clusters. The calculated fragmentation energy and the second-order energy difference as a function of the cluster size exhibit a pronounced even–odd alternation phenomenon. The electronic properties including energy gap(E_g), adiabatic electron affinity(AEA), vertical electron detachment energy(VDE), adiabatic ionization potential energy(AIP), and vertical ionization potential energy(VIP) are studied. The total magnetic moments show that the different magnetic moments depend on the number of the In atoms for charged In_nNi. Additionally, the natural population analysis of In_nNi~((0,±1)clusters is also discussed. 相似文献
9.
The geometric structures, stabilities, and electronic properties of small size anionic [AunRb]? and Aun+1? (n = 1–10) clusters have been systematically investigated by using density functional theory. The optimised geometries show that the structures of [AunRb]? clusters favour the three-dimensional structure at n ≥ 8. The Rb atoms tend to occupy the most highly coordinated position and form the largest probable number of bonds with gold atoms. One Au atom capped on [Aun-1Rb]? structures is the dominant growth pattern for n = 2–8 and Rb atom capped on Aun? structures for n = 9–10. The averaged atomic bonding energies, fragmentation energies, second-order difference of energies, and highest occupied molecular orbital–lowest unoccupied molecular orbital gaps exhibit a pronounced even–odd alternations phenomenon. The charges in [AunRb]? clusters transfer from the Rb atoms to Aun host. In addition, it is found that the most favourable dissociation channel of the [AunRb]? clusters is to eject a Rb atom and the highest energy dissociation path is Rb? anion ejection. 相似文献
10.
Density-functional method PW91 has been selected to investigate the structural, electronic and magnetic properties of Au4M (M =Sc–Zn) clusters. Geometry optimisations show that the M atoms in the ground-state Au4M clusters favour the most highly coordinated position. The ground-state Au4M clusters possess a solid structure for M = Sc and Ti and a planar structure for M = V–Zn. The characteristic frequency of the doped clusters is much greater than that of pure gold cluster. The relative stability and chemical activity are analysed by means of the averaged binding energy and highest occupied molecular orbital and lowest unoccupied molecular orbital energy gap for the lowest energy Au4M clusters. It is found that the dopant atoms can enhance the thermal stability of the host cluster except for Zn atom. The Au4Ti, Au4Mn and Au4Zn clusters have relatively higher chemical stability. The vertical detachment energy, electron affinity and photoelectron spectrum are calculated and simulated theoretically for all the ground-state structures. The magnetism calculations reveal that the total magnetic moment of Au4M cluster is mainly localised on the M atom and vary from 0 to 5 μB by substituting an Au atom in Au5 cluster with different transition-metal atoms. 相似文献
11.
WANG Xin-qiang CHEN Yong 《原子与分子物理学报》2004,21(Z1):211-212
The structural and electronic properties of (CdSe)n(1≤n≤5) clusters are calculated using density functional theory within the pseudopotential and generalized gradient approximations. The calculated binding energies and highest occupied molecular orbital lowest unoccupied molecular orbital gaps are compared with those obtained within local density approximation. 相似文献
12.
Stability,electronic structures,and mechanical properties of Fe–Mn–Al system from first-principles calculations 下载免费PDF全文
The stability, electronic structures, and mechanical properties of the Fe–Mn–Al system were determined by firstprinciples calculations. The formation enthalpy and cohesive energy of these Fe–Mn–Al alloys are negative and show that the alloys are thermodynamically stable. Fe_3Al, with the lowest formation enthalpy, is the most stable compound in the Fe–Mn–Al system. The partial density of states, total density of states, and electron density distribution maps of the Fe–Mn–Al alloys were analyzed. The bonding characteristics of these Fe–Mn–Al alloys are mainly combinations of covalent bonding and metallic bonds. The stress-strain method and Voigt–Reuss–Hill approximation were used to calculate the elastic constants and moduli, respectively. Fe_(2.5)Mn_(0.5)Al has the highest bulk modulus, 234.5 GPa. Fe_(1.5)Mn_(1.5)Al has the highest shear modulus and Young's modulus, with values of 98.8 GPa and 259.2 GPa, respectively. These Fe–Mn–Al alloys display disparate anisotropies due to the calculated different shape of the three-dimensional curved surface of the Young's modulus and anisotropic index. Moreover, the anisotropic sound velocities and Debye temperatures of these Fe–Mn–Al alloys were explored. 相似文献
13.
A systematic study of the X2Aun (X = La, Y, Sc; n = 1–9) clusters are performed by using the density functional theory at TPSS level. The structures, stabilities, electronic, and magnetic properties are investigated in comparison with pure gold clusters. The results show that the transition points of the doped clusters from two-dimensional to three-dimensional structure are obviously earlier than gold clusters. The impurity X atoms tend to occupy the most highly coordinated position and form the largest probable number of bonds with gold atoms. In addition, the impurity atoms can strongly enhance the stabilities of gold clusters. It indicates that the impurity atoms dramatically affect the geometries and stabilities of the Aun clusters. The highest occupied molecular orbital–lowest occupied molecular orbital gap, vertical ionisation potential, and chemical hardness show that the X2Au6 clusters have higher stabilities than the others. In La2Au1–9, Y2Au1–7, and Sc2Au1–4 clusters, the charges transfer from X atoms to the Aun frames. The total magnetic moments of X2Aun clusters exist distinctly odd–even alternation behaviours except for La2Au4 and Sc2Au4 clusters. 相似文献
14.
The density functional method with the relativistic effective core potential has been employed to investigate systematically the geometric structures, relative stabilities, growth-pattern behavior, and electronic properties of small bimetallic Au n Rb (n?=?1–10) and pure gold Au n (n?≤?11) clusters. For the geometric structures of the Au n Rb (n?=?1–10) clusters, the dominant growth pattern is for a Rb-substituted Au n +1 cluster or one Au atom capped on a Au n –1Rb cluster, and the turnover point from a two-dimensional to a three-dimensional structure occurs at n?=?4. Moreover, the stability of the ground-state structures of these clusters has been examined via an analysis of the average atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of cluster size. The results exhibit a pronounced even–odd alternation phenomenon. The same pronounced even–odd alternations are found for the HOMO–LUMO gap, VIPs, VEAs, and the chemical hardness. In addition, about one electron charge transfers from the Au n host to the Rb atom in each corresponding Au n Rb cluster. 相似文献
15.
D. A. Kilimis D. G. Papageorgiou 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2010,56(2):189-197
The structural and electronic properties of small gas-phase AgmCun
clusters with m+n=2–5 atoms are investigated using spin-polarized density
functional theory. The LANL2DZ effective core potential and the
corresponding basis set are employed while the performance of several
exchange-correlation functionals is assessed. For a given cluster size all
possible compositions are subject to optimization using a variety of initial
structures. The geometry, binding energy, relative stability, ionization
potential, electron affinity and HOMO-LUMO gap are reported for the lowest
energy structure of every cluster size and composition. The results show
that planar structures are favored, triangular for trimers, rhombic for
tetramers and trapezoidal for pentamers. Moreover, for tetramers and
pentamers we found that silver atoms demonstrate a clear tendency to occupy
edge positions. The calculation of electronic properties indicates that
although all exchange-correlation functionals predict the same trends, the
choice of method is crucial concerning the final quantitative results. 相似文献
16.
Mao Ai-Jie Kuang Xiao-Yu Chen Gang Zhao Ya-Ru Li Yan-Fang Lu Peng 《Molecular physics》2013,111(11):1485-1494
The ab initio method based on density functional theory at the B3PW91 level has been applied to study the geometric, electronic, and magnetic properties of neutral and anionic Au n Pd (n?=?1–9) clusters. The results show that the most stable geometric structures adopt a three-dimensional structure for neutral Au7Pd and Au8Pd clusters, but for anionic clusters, no three-dimensional lowest-energy structures were obtained. The relative stabilities of neutral and anionic Au n Pd clusters were analysed by means of the dependent relationships between the binding energies per atom, the dissociation energies, the second-order difference of energies, the HOMO–LUMO energy gaps and the cluster size n, and a local odd–even alternation phenomenon was found. Natural population analysis indicates the sequential transfer from the Pd atom to the Au n frame in Au1,2,3,5Pd and Au2,3Pd? clusters, and from the Au n frame to the Pd atom in other clusters. Much to our surprise, irrespective of whether it is the total magnetic moment or the local magnetic moment, the magnetic moment presents an odd–even alternation phenomenon as a function of the cluster size n. The magnetic effects are mainly localized on the various atoms (Au or Pd) for different cluster size n. 相似文献
17.
Y. Li Y. P. Cao Y. F. Li S. P. Shi X. Y. Kuang 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2012,66(1):7
The ab initio method based on density functional theory at the PW91PW91 level has been employed to systematically study the
structures, stabilities, electronic, and magnetic properties of gold clusters with or without silicon/phosphorus doping. The
optimized geometries show that the most stable isomers for Au
n
Si2 and Au
n
P2 (n = 1–8) clusters prefer a three-dimensional structure when n = 2 and n = 3 upwards, respectively, and they can be viewed as grown from the already observed Au
n−1M2 (M = Si, P). The relative stabilities of calculated Au
n
M2 (M = Si, P) clusters have been analyzed through the atomic average binding energy, fragmentation energy, second-order difference
of energy, and HOMO-LUMO gap. A pronounced odd-even alternative phenomenon indicates that the clusters with even-numbered
valence electrons possess a higher stability than their neighboring ones. For both systems, natural population analysis reveals
that electronic properties of dopant atoms in the corresponding configuration are mainly related to s and p states. We also investigated magnetic effects of clusters as a function of cluster size, however, their oscillatory magnetic
moments were found to vary inversely to the fragmentation energy, second-order difference of energy, and HOMO-LUMO gap. 相似文献
18.
Structural evolutions and electronic properties of Au_nGd(n=6–15) small clusters: A first principles study 下载免费PDF全文
Structural, electronic, and magnetic properties of Au_nGd(n = 6–15) small clusters are investigated by using first principles spin polarized calculations and combining with the ab-initio evolutionary structure simulations. The calculated binding energies indicate that after doping a Gd atom Aun Gd cluster is obviously more stable than a pure Au_(n+1) cluster.Au_6Gd with the quasiplanar structure has a largest magnetic moment of 7.421 μ_B. The Gd-4 f electrons play an important role in determining the high magnetic moments of Au_nGd clusters, but in Au_6Gd and Au_(12) Gd clusters the unignorable spin polarized effects from the Au-6 s and Au-5 d electrons further enhance their magnetism. The HOMO–LUMO(here, HOMO and LUMO stand for the highest occupied molecular orbital, and the lowest unoccupied molecular orbital, respectively)energy gaps of Au_nGd clusters are smaller than those of pure Au_(n+1) clusters, indicating that Au_nGd clusters have potential as new catalysts with enhanced reactivity. 相似文献
19.
N. A. Borshch N. S. Pereslavtseva S. I. Kurganskii 《Physics of the Solid State》2014,56(11):2336-2342
The results of optimizing the spatial structure and calculated electronic spectra of the TaGe n ? anion clusters (n = 8–17) have been presented. The calculations have been performed in terms of the density functional theory. The most probable spatial structures of clusters detected in the experiment have been determined by comparing the calculated and available experimental data. 相似文献
20.
Structure,stability and electronic properties of SrSi_n(n= 1–12) clusters::Density-functional theory investigation 下载免费PDF全文
Geometric structures, stabilities, and electronic properties of SrSin(n = 1–12) clusters have been investigated using the density-functional theory within the generalized gradient approximation. The optimized geometries indicate that one Si atom capped on SrSin 1structure and Sr atom capped Sinstructure for difference SrSinclusters in size are two dominant growth patterns. The calculated average binding energy, fragmentation energy, second-order energy difference, the highest occupied molecular orbital, and the lowest unoccupied molecular orbital(HOMO–LUMO) gaps show that the doping of Sr atom can enhance the chemical activity of the silicon framework. The relative stability of SrSi9is the strongest among the SrSinclusters. According to the mulliken population and natural population analysis, it is found that the charge in SrSin clusters transfer from Sr atom to the Sinhost. In addition, the vertical ionization potential, vertical electron affinity, and chemical hardness are also discussed and compared. 相似文献