首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cobalt(II)-hexamethylenetetramine (Co(II)-HMTA) complex was prepared using jet milling. Elemental analysis and thermogravimetric analysis confirmed that the structure of the Co(II)-HMTA complex was Co(HMTA)2Cl2·6H2O (LG). The influence of LG on the thermal performance of poly(l-lactic acid) (PLLA) was investigated. Isothermal crystallization behavior and X-ray diffraction analysis (XRD) results of PLLA/LG showed that LG could improve the crystallization performance of PLLA; 1% LG caused the half time of overall crystallization (t1/2) of PLLA to decrease from 96.5 min to a minimum value 3.8 min at 100°C. However, the isothermal crystallization kinetics of PLLA/LG described using the Avrami equation and XRD analysis indicated that the isothermal crystallization temperature and the LG concentration significantly affected the isothermal crystallization process of PLLA. In particular, 0.3% LG caused the intensity of the X-ray crystal diffraction peaks of PLLA to decrease with an increase of isothermal crystallization time after increasing for the first 5 min. The thermal decomposition analysis of PLLA/LG showed that the onset decomposition temperature of PLLA with a small amount of LG was higher than that of the neat PLLA and PLLA with a high concentration LG.  相似文献   

2.
Poly(butylene succinate-co-adipate) (PBSA)/poly (trimethylene carbonate) (PTMC) blend samples with different weight ratios were prepared by solution blending. The morphologies after isothermal crystallization and in the melt were observed by optical microscopy (OM). Differential scanning calorimetry (DSC) was used to characterize the isothermal crystallization kinetics and melting behaviors. According to the OM image before and after melting, it was found that the blends formed heterogenous morphologies. When the PTMC content was low (20%), PBSA formed the continuous phase, while when the PTMC contents was high (40%), PBSA formed the dispersed phase. The glass transition temperatures (Tg) of the blends were determined by DSC and the differences of the Tg values were smaller than the difference between those of pure PBSA and PTMC. In addition, the equilibrium melting points were depressed in the blends. According to these results, the PBSA/PTMC blends were determined as being partially miscible blends. The crystallization kinetics was investigated according to the Avrami equation. It was found that the incorporation of PTMC did not change the crystallization mechanism of PBSA. However, the crystallization rate decreased with the increase of PTMC contents. The change of crystallization kinetics is related with the existences of amorphous PTMC, the partial miscibility between PLLA and PTMC, and the changes of phase structures.  相似文献   

3.
The crystallization kinetics of poly(ethylene terephthalate)/attapulgite (AT) nanocomposites and their melting behaviors after isothermal crystallization from the melt were investigated by DSC and analyzed using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PET. Step-scan differential scanning calorimetry was used to study the influence of AT on the crystallization and subsequent melting behavior in conjunction with conventional DSC. The results revealed that PET and PET/AT nanocomposites experience multiple melting and secondary crystallization processes during heating. The melting behaviors of PET and PET/AT nanocomposites varied in accordance with the crystallization temperature and shifted to higher temperature with the increase of AT content and isothermal crystallization temperature. The main effect of AT nanoparticles on the crystallization of PET was to improve the perfection of PET crystals and weaken its recrystallization behavior.  相似文献   

4.
A study of the isothermal crystallization behaviors of poly(9,9-dihexylfluorene-alt-2,5-didodecyloxybenzene) (PF6OC12) was carried out using differential scanning calorimetry (DSC). The crystallization kinetics under isothermal conditions could be described by the Avrami equation. The Avrami exponent n ranges from 3.43 to 3.71 for PF6OC12 at crystallization temperatures between 100.0°C and 90.0°C, indicating a three-dimensional spherical crystal growth with homogeneous nucleation in the primary crystallization stage for the isothermal melt crystallization process. In the DSC scan, after the isothermal crystallization, multiple melting behavior was found. The multiple endotherms could be attributed to melting of recrystallized materials produced originally during different crystallization processes. According to the Arrhenius equation, the activation energy was determined to be 211.29 kJmol?1 for the isothermal melt crystallization of PF6OC12.  相似文献   

5.
The kinetics of isothermal melt crystallization of poly(trimethylene terephthalate) (PTT)/poly(butylene terephthalate) (PBT) blends were investigated using differential scanning calorimetry (DSC) over the crystallization temperature range of 184–192°C. Analysis of the data was carried out based on the Avrami equation. The values of the exponent found for all samples were between 2.0 and 3.0. The results indicated that the crystallization process tends to be two‐dimensional growth, which was consistent with the result of polarizing light microscopy (PLM). The activation energies were also determined by the Arrhenius equation for isothermal crystallization. The values of ΔE of PTT/PBT blends were greater than those for PTT and PBT. Lastly, using values of transport parameters common to many polymers (U*=6280 J/mol, T =T g – 30), together with experimentally determined values of T m 0 and T g, the nucleation parameter, K g, for PTT, PBT, and PTT/PBT blends was estimated based on the Lauritzen–Hoffman theory.  相似文献   

6.
An aliphatic multiamide derivative derived from 1H-benzotriazole, N, N'-bis(1H-benzotriazole) sebacic acid acethydrazide (SA), was synthesized to evaluate its effect on the thermal performance, including non-isothermal crystallization and melting behavior as well as thermal stability, of poly(l-lactic acid) (PLLA). The comparative study, by means of DSC measurements, showed that the incorporation of SA caused a non-isothermal crystallization peak to appear and become sharp, showing its advanced crystallization promoting effect for PLLA. The non-isothermal crystallization results further indicated that 2 wt% SA was the saturation concentration for PLLA crystallization, and that the cooling rate was also a crucial determinant for PLLA crystallization. Considering the melting behavior, the difference between the virgin PLLA and PLLA/2%SA further confirmed the crystallization accelerative effect of SA for PLLA, with the increase of crystallization temperature in the temperature zone from 90 to 130°C being beneficial to the crystallization of PLLA during processing. Compared to the virgin PLLA, the trends of thermal decomposition curves were similar, suggesting that the introduction of SA of 0.5–3 wt% did not significantly change the thermal decomposition behavior of PLLA.  相似文献   

7.
Amorphous poly(l-lactide) (PLLA) was annealed in two different ways: amorphous samples were heated at a given temperature to induce crystallization (one-step annealing); and amorphous samples were first crystallized at a low temperature and subsequently annealed at a higher temperature than the crystallization temperature. Samples thus prepared were measured by DSC. The original amorphous sample exhibited an exothermic peak at about 100°C (exothermic peak I), an exothermic peak just below the melting point (exothermic peak II), and an endothermic peak when it was melted. Exothermic peak I was caused by cold crystallization. When the melting points of PLLA samples, heat-treated in various ways, were plotted as a function of annealing temperature, there was discontinuity at about 120°C. From analyses of wide-angle X-ray diffraction patterns, it was found that when amorphous PLLA was crystallized at a temperature below 120°C, crystallites of the β-form formed, and when annealed at a temperature above 120°C, crystallites of the α-form grew. Thus, exothermic peak I was attributed to cold crystallization of the β-form, and peak II was caused by the phase transition of the β-form to a more stable form.  相似文献   

8.
The effects of gamma-ray irradiation on the isothermal crystallization of biodegradable poly(ethylene succinate) (PESu) and the growth behavior of PESu spherulites have been studied by differential scanning calorimetry and polarized optical microscopy. The irradiation doses used in the study are 0, 200, 400, and 600 kGy. The kinetic parameters for the isothermal crystallization have been determined, using the Avrami relationship. The nucleation constants and activation energy for the growth of the PESu spherulites have been analyzed, using the Lauritzen-Hoffman growth theory. Triple melting points have been observed for all the irradiated PESu. The gamma irradiation has no observable effect on the Avrami exponent, and the composite rate constant increases first with the increase of the crystallization temperature, reaches maximum at the crystallization temperature of ~35 °C, and then decreases with the increase of the crystallization temperature for both the non-irradiated and irradiated PESu. There exists a transition of the growth of the PESu spherulites from regime II to regime III. Both the nucleation constants and activation energy increase with increasing the irradiation dose. The gamma irradiation increases the energy barrier for the migration of polymer chains.  相似文献   

9.

Thermal properties and overall rates of isothermal crystallization from the melt of a commercial ionic copolyester (K‐X/SPET) based on poly(ethylene terephthalate) (PET) were analyzed in detail over a composition range from pure PET to a copolymer containing 10.1 mol% of potassium‐neutralized sulfonated PET. For measurements, differential scanning calorimetry (DSC) was used. Copolyesters with the ionic group content of 4.4 mol% or more were unable to crystallize. The isothermal melt crystallization of the copolyesters was analyzed using both the Avrami and the modified Lauritzen‐Hoffman equations. It was found that both the overall rate constant, as well as the Avrami parameter for the primary crystallization stage, varied with the sulfonated unit percentage—but surface free energy and work of folding were practically independent of them. The observed changes in the thermal properties and the kinetic parameters of crystallization were attributed to the comonomer effects and the intermolecular aggregation of the ionic groups.  相似文献   

10.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR) blends were prepared by melt mixing. Isothermal crystallization and miscibility for neat iPP and blends of iPP/PcBR were investigated by differential scanning calorimetry. The presence of PcBR remarkably affected isothermal crystalline behaviors of iPP. An addition of PcBR caused shorter crystallization time and a faster overall crystallization rate, meaning a heterogeneous nucleation effect of PcBR upon crystallization of iPP. For the same sample, the crystallization peak was broader and the supercooling decreased as the crystallization temperature increased. The Avrami equation was suitable to describe the primary isothermal crystallization process of iPP and blends. The addition of PcBR led to an increase of values of the Avrami exponent n, which we suggest was because the blends had a stronger trend of instantaneous three-dimensional growth than neat iPP. The equilibrium melting point depression of the blends was observed, indicating that the blends were partly miscible in the melt.  相似文献   

11.
Tetracalcium phosphate (TTCP, Ca4(PO4)2O) was functionalized by poly (l-lactic acid) (PLLA) in order to improve the dispersion of TTCP particles in poly (butylene succinate) (PBS) matrices, and then a series of the PLLA grafted TTCP/PBS (g-TTCP/PBS) composites were prepared via melt processing. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (DTG/TGA) and melt rheological analysis were used to investigate the structure and properties of the g-TTCP/PBS composites. The results revealed that l-lactide could be grafted onto the surface of TTCP, and the g-TTCP/PBS composites showed the best mechanical properties when the content of g-TTCP was 10 wt%. The crystallization temperature of g-TTCP/PBS composites tended to increase with the increase of g-TTCP contents. The functionalized particles played an important role in augmenting the thermal degradation rate and the complex viscosity of the composites due to their unique structure and the reasonable interfacial interaction between the particles and PBS matrix.  相似文献   

12.
The synergistic effects of poly(ethylene glycol) (PEG) and polyhedral oligomeric silsesquioxanes (POSS) on the crystallization behavior of semicrystalline poly(L-lactide) (PLLA) were systemically investigated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Initially, the influences of PEG and POSS, individually, on PLLA crystallization were studied. The results indicated that PEG, as an efficient plasticizer, enhanced the mobility of the PLLA chains, resulting in decreasing of the glass transition temperature. The enhanced crystallization capacity of PLLA was strongly dependent on the molecular weight and content of the PEG, increasing with decreasing of the molecular weight and increasing of the PEG content. The experimental results also indicated that POSS was a heterogeneous nucleating agent, promoting the crystallization of PLLA. The synergistic effects of PEG and POSS on PLLA crystallization were then analyzed. The results showed that in the presence of PEG and POSS the crystallinity of PLLA was further enhanced due to their synergistic effects.  相似文献   

13.
Recycled poly(ethylene terephthalate) (r-PET) was blended with poly(ethylene octene) (POE) and glycidyl methacrylate grafted poly(ethylene octene) (mPOE). The nonisothermal crystallization behavior of r-PET, r-PET/POE, and r-PET/mPOE blends was investigated using differential scanning calorimetry (DSC). The crystallization peak temperatures (T p ) of the r-PET/POE and r-PET/mPOE blends were higher than that of r-PET at various cooling rates. Furthermore, the half-time for crystallization (t 1/2 ) decreased in the r-PET/POE and r-PET/mPOE blends, implying the nucleating role of POE and mPOE. The mPOE had lower nucleation activity than POE because the in situ formed copolymer PET-g-POE in the PET/mPOE blend restricted the movement of PET chains. Non-isothermal crystallization kinetics analysis was carried out based on the modified Avrami equation, the Ozawa equation, and the Mo method. It was found that the Mo method provided a better fit for the experimental data for all samples. The effective energy barriers for nonisothermal crystallization of r-PET and its blends were determined by the Kissinger method.  相似文献   

14.
The blends of poly(trimethylene terephthalate) (PTT) with maleic anhydride-grafted poly(ethylene-octene) (POE-g-MA) and organoclay (OMMT) were prepared by melt-blending. The effects of organoclay platelets on the isothermal crystallization behaviors of PTT/POE-g-MA blend were examined using differential scanning calorimetry. The crystallization kinetics of the primary stage under isothermal conditions could be described by the Avrami equation, with values of the Avrami exponent between 2.01 and 2.81 for all samples. The crystallization rate parameter, K, decreased with increase of melt-crystallization temperature for all samples. The activation energies for isothermal crystallization were determined by the Arrhenius equation.  相似文献   

15.
In this work, isothermal and nonisothermal crystallization kinetics of poly(ethylene oxide) (PEO) and PEO in PEO/fatty acid (lauric and stearic acid) blends, that are used as thermal energy storage materials, was studied using differential scanning calorimetry (DSC) data. The Avrami equation was adopted to describe isothermal crystallization of PEO and nonisothermal crystallization was analyzed using both the modified Avrami approach and Ozawa method. Avrami exponent (n) for PEO crystallization was in the range 1.08–1.32 (10–90% relative crystallinity), despite of spherulites formation, while for PEO in PEO/fatty acid blends n was between 1.61 and 2.13. Hoffman and Lauritzen theory was applied to calculate the activation energy of nucleation (Kg) – the lowest value of Kg was observed for pure PEO, despite of heterogeneous nucleation of fatty acid crystals in PEO/fatty acid blends. For nonisothermal crystallization of PEO in PEO/lauric acid (1:1 w/w) and PEO/stearic acid (1:3 w/w) blends, secondary crystallization occurred and values of the Avrami exponent were 2.8 and 2.0, respectively. The crystallization activation energies of PEO were determined to be ?260 kJ/mol for pure PEO, ?538 kJ/mol for PEO/lauric acid blend, and ?387 kJ/mol for PEO/stearic acid blend for isothermal crystallization and ?135,6 kJ/mol, ?114,5 kJ/mol, and ?92,8 kJ/mol, respectively, for nonisothermal crystallization.  相似文献   

16.
The effect of blend composition on crystallization morphology and behavior of a crystalline/crystalline blend, poly(l-lactic acid) (PLLA)/poly(ethylene oxide) (PEO), during slow, non-isothermal crystallization was studied by polarized light microscopy (PLM) connected with a hot-stage and differential scanning calorimetry (DSC). The results showed that all of the PLLA/PEO blends produced spherulites which gradually became bigger and looser, as well as coarser, with the increment of the PEO content, indicating that the PEO crystals was resided in the interlamellar or interfibrillar (between clusters of commonly oriented lamellae) regions of the PLLA spherulites. In the (25/75) and (10/90) blends, the nucleation and growth processes of the PEO spherulites could be clearly observed in the pre-existing PLLA spherulites. The onset crystallization temperature and the melting point of one component decreased with increasing the content of the other one owing to the good miscibility of the two components in the non-crystalline state and the interaction between their macromolecules, indicating that the crystallization of each component was influenced by the other one.  相似文献   

17.
Poly (L-lactic acid) (PLLA) microspheres were prepared by a solvent evaporation method based on an oil/water emulsion. The effect of the mass ratio of PLLA and poly(vinyl alcohol) (PVA) on the formation of the microspheres was discussed, and the influence of extraction speed of dichloromethane on the microsphere morphology was also studied. Moreover, the influences of the PLLA concentration and the volume ratio of water phase to dichloromethane phase were investigated. The results showed that stable microspheres can be obtained under the conditions that the mass ratio of PLLA to PVA is 20:1. Porous microspheres were obtained under faster evaporating speed of dichloromethane. The microsphere size increased with increasing PLLA concentration. The microsphere size also increased with the increase of the volume ratio of water phase to dichloromethane phase.  相似文献   

18.
The crystallization process of poly(ethylene terephthalate)/silica nanocomposites were investigated by differential scanning calorimetry (DSC) and then analyzed using the Avrami method. The results indicated that the crystallization of pure poly(ethylene terephthalate) (PET) was fitted for thermal nucleation and three‐dimensional spherical growth throughout the whole process, whereas the crystallization of PET/silica nanocomposites exhibits two stages. The first stage corresponds to athermal nucleation and three‐dimensional spherical growth, and the second stage corresponds to recrystallization caused by the earlier spherulites impingement. The crystallization rate increases remarkably and the activation energies decrease considerably when silica nanoparticles are added. The subsequent melting behavior of the crystallized samples shows that the melting point (T m) of nanocomposites is higher than that of pure PET, which might be caused by two factors: (1) The higher melting point might be due to some hindrance to the PET chains caused by the nanoparticles at the beginning of the melting process; (2) it might also be the case that more perfect crystals can be formed due to the higher crystallization temperatures and lower activation energies of PET/silica nanocomposites.  相似文献   

19.
The effect of the metallic salts of phenylmalonic acid (PMA), as novel nucleating agents, on the melt and crystallization behaviors, spherulitic morphologies, and crystal structures of poly(L-lactide) (PLLA) was studied by means of differential scanning calorimetry, polarized light microscopy, and wide angle X-ray diffraction (WAXD). The results showed that calcium and cadmium salts of PMA are good nucleating agents for PLLA. Lithium, sodium, magnesium, strontium, and zinc salts of PMA are moderate nucleating agents, barium and aluminum salts of PMA are weak nucleating agents, while potassium phenylmalonate is not a nucleating agent for PLLA. The presence of nucleating agents significantly increased the number and decreased the size of the spherulites, but the crystal structures of the nucleated PLLA samples were not changed.  相似文献   

20.
Poly(ethylene terephthalate)/grafted carbon black (PET/GCB) and poly(ethylene terephthalate)/carbon black (PET/CB) composites were prepared by melt blending. The nucleating effect of CB and GCB were investigated using differential scanning calorimetry (DSC) analysis. The morphologies of the spherulites in PET, PET/CB and PET/GCB composites were observed by means of scanning electron microscopy (SEM). All results showed that GCB had higher nucleating activity than CB in PET and PET/GCB composite had higher rate of nucleation and crystallization. The melting behaviors of neat PET, PET/CB and PET/GCB composites after non‐isothermal crystallization were investigated as well. It was evident that the melting behavior of PET is greatly influenced by addition of CB and GCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号