共查询到7条相似文献,搜索用时 15 毫秒
1.
Predicting solvent effects in ionic liquids: Extension of a nucleophilic aromatic substitution reaction on a benzene to a pyridine 下载免费PDF全文
Rebecca R. Hawker Ronald S. Haines Jason B. Harper 《Journal of Physical Organic Chemistry》2018,31(10)
A nucleophilic aromatic substitution reaction involving a halopyridine electrophile was examined in a series of ionic liquid solvents. This reaction was chosen to test the known solvent effects of ionic liquids on this type of reaction mechanism, previously described with a halobenzene electrophile. The effect of varying the proportion of the ionic liquid in solution was determined, and it was shown that the more ionic liquid present in the reaction mixture, the greater the rate constant enhancement. Temperature‐dependent kinetic analyses yielded activation parameters that showed that the rate constant enhancements are controlled by a balance between enthalpic and entropic effects, depending upon the proportion of ionic liquid present. Overall, the rate enhancement is entropically driven, due to organisation of the ionic liquid about the electrophile. These results are consistent with what has been observed previously for the nucleophilic aromatic substitution reaction involving a halobenzene electrophile, demonstrating that the solvent effects observed for ionic liquids are general for this type of reaction mechanism and opening the possibility for extending their use through rational selection for reaction control. 相似文献
2.
Data describing the insertion of sulphur dioxide into the carbon―tin bond of a range of substituted phenyltrimethyltin compounds in methanol and benzene solvents have been reconsidered. The reaction in methanol is cleanly second order, but the reaction in benzene has both a second‐order and third‐order component, the latter ascribable to an initial equilibrium formation of a SO2 complex with the phenyl ring followed by the insertion of a second SO2 molecule into the carbon–tin bond. Molecular orbital calculations have identified the transition states (TS) and the favoured reaction pathways for the second‐order and third‐order reaction pathways in benzene. The effects of solvents on TS and enthalpies of reaction have also been examined. New insights into the types of TS involved in electrophilic substitution reactions are revealed. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
4.
研究了快速双原子分子离子在固体中穿行时,尾流效应对各离子电荷态以及库仑爆炸过程的影响.借助于线性介电响应理论和局域介电函数,离子之间的动力学相互作用势可以表示成对称的屏蔽库仑势和非对称的尾势.通过对分子离子上所有束缚电子的总能量进行变分和求解单个离子的运动方程,自洽地确定出分子离子中每个离子的电荷态.数值结果表明,由于尾流效应的影响,在初始穿行阶段,分子离子中导航离子的电荷数随穿行深度的增加而单调递增,而尾随离子的电荷数则随穿行深度的增加而振荡.但当穿行深度很大时,两个离子的电荷数都趋于具有相同速度的孤立离子的电荷数.此外,还发现分子轴的取向朝入射速度方向偏转 相似文献
5.
Zenobia Biedrzycka Krystyna Kamieńska‐Trela Micha? Witanowski 《Journal of Physical Organic Chemistry》2010,23(6):483-487
It is demonstrated that some acetylenes, those of the R? C?CH structure, display anomalously high sensitivity to solvent effects of their 1J(C?C) coupling while R? C?CR acetylenes fail to show that. The solvent‐induced variation in the latter coupling does not exceed 3 Hz; this seems to be the upper limit of variation of any J(CC) and J(CH) coupling in the molecular system studied which included: acetylene (in 13 solvents), phenylacetylene (in 12 solvents), 1‐phenylpropyne, and 2‐hexyne (two solvents each), and the only exceptions are 1J(C?C) in acetylene, which is shown to vary within about 13 Hz, and that in phenylacetylene where the range amounts to about 8 Hz. These apparent anomalies are explained in the present study in terms of two effects of prime importance, solvent polarity and the solute‐to‐solvent hydrogen bonds where the CH moiety in R? C?CH acetylenes acts as a donor of hydrogen bonds to acceptor sites in the solvent concerned. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
Elzbieta Winnicka Pawel Da¸browski Tomasz Winek 《Isotopes in environmental and health studies》2013,49(2):225-232
The kinetic and solvent deuterium isotope effects in the 4- and 5-positions of the indole ring on the enzymatic decomposition of l-tryptophan catalysed by the enzyme TPase (EC. 4.1.99.1) were determined. The isotope effects were investigated by the non-competitive method using [4′-2H]-l-tryptophan, which was enriched in deuterium in 70% in the 4-position. The numerical values of isotope effects for 100% enrichment in deuterated label in that position were calculated by approximation. Those same isotope effects were determined for [5′-2H]-l-tryptophan fully deuteriated in the 5′ -position. 相似文献
7.
An experimental and theoretical study on the preparation of 4,4′‐methylene‐bis(N,N‐dimethylaniline) in ionic liquid 下载免费PDF全文
Yun Wang 《Journal of Physical Organic Chemistry》2016,29(6):276-280
The reaction of N,N‐dimethylaniline with tetrachloromethane in ionic liquid was found to give 4,4′‐methylene‐bis (N,N‐dimethylaniline) in considerable yield. The ionic liquid was prepared from N,N‐dimethylaniline which is also the one of raw materials for the preparation of 4,4′‐methylene‐bis (N,N‐dimethylaniline), and acts as both solvent and catalyst in the reaction. Mild reaction conditions, enhanced rates, improved yields, and reagents' reactivity which is different from that in conventional organic solvents are the remarkable features observed in ionic liquids. In addition, the results of calculations are in good accordance with the experimental outcomes. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献