首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Switchable surfactants, particularly those triggered by CO2 used for switchable foam control, are relatively less documented. In this article, the foaming performance of 2-alkyl-1-hydroxyethylimidazolinium bicarbonate cationic surfactants (HEAIBs) was investigated for the first time. The foaming properties of these surfactants demonstrate that HEAIBs can generate foam with moderate stability, on demand, can be rapidly yet reversibly dissipated upon exposure to air. The results illustrated such a facile trigger, and the foam on/off transition would have huge potential to form a new class of stimuli-response foaming agents.   相似文献   

2.
A CO2-switchable polymer surfactant was synthesized with acrylamide (AM) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The changes in conductivity, particle size, and ζ-potential were adopted to illustrate its switchability. The CMC of the surfactant was determined by the break point of the curve of surface tension versus concentration. An oil emulsion with 8 g/L surfactant almost reached the highest stability. The thermodynamic stability of the emulsion decreased sharply upon increase of the temperature. Adding an inorganic salt was hard to affect the emulsion stability because the surfactant is non-ionic. The emulsion could maintain its stability even if the concentration of NaCl was as high as 10 g/L. The emulsion could easily be broken by bubbling CO2. Its dehydration rate was 155 times faster than that without the presence of CO2, and the amount of residual oil in water was only 32.22 ppm, which displayed brilliant performance of de-emulsification.  相似文献   

3.
Oligomeric surfactants display the novel properties of low surface activity, low critical micellar concentration and enhanced viscosity, but no CO2 switchable oligomeric surfactants have been developed so far. The introduction of CO2 can convert tertiary amine reversibly to quaternary ammonium salt, which causes switchable surface activity. In this study, epoxidized soybean oil was selected as a raw material to synthesize a CO2-responsive oligomeric surfactant. After addition and removal of CO2, the conductivity analyzing proves that the oligomeric surfactant had a good response to CO2 stimulation. The viscosity of the oligomeric surfactant solution increased obviously after sparging CO2, but returned to its initial low viscosity in the absence of CO2. This work is expected to open a new window for the study of bio-based CO2-stimulated oligomeric surfactants.  相似文献   

4.
We prepared a CO2/N2-switchable pseudogemini surfactant system composed of sodium oleate (NaOA) and N, N, N’, N’-tetramethyl-1, 6-hexanediamine (TMHDA) at a mole ratio of 2:1. The two tertiary amine groups of the TMHDA can be protonated into quaternary ammonium salt when the system was bubbled with CO2, which can ‘‘bridge’’ two NaOA molecules via electrostatic attraction to form a pseudogemini surfactant. The formed pseudogemini surfactant can further self-assemble to wormlike micelles, causing a sharp increase in viscosity. The viscoelastic property and structure transitions of the pseudogemini surfactant system were investigated before and after bubbling of CO2. The pseudogemini surfactant system transformed from water-like to gel-like fluid with the bubbling of CO2, followed by white precipitate. The cryo-transmission electron microscope (cryo-TEM) characterization and rheological measurements exhibited that the sol–gel transition was attributed to a spherical-wormlike micelle transition. Moreover, this transition was switchable at least in three cycles. Finally, a reasonable mechanism of aggregate behavior transition was proposed from the viewpoint of the molecular states, micelle structures, and intermolecular interactions.  相似文献   

5.
CO2-switchable oligomeric surfactants have good viscosity-reducing properties; however, the complex synthesis of surfactants limits their application. In this study, a CO2-switchable “pseudo”-tetrameric surfactant oleic acid (OA)/cyclic polyamine (cyclen) was prepared by simple mixing and subsequently used to reduce the viscosity of heavy oil. The surface activity of OA/cyclen was explored by a surface tensiometer and a potential for viscosity reduction was revealed. The CO2 switchability of OA/cyclen was investigated by alternately introducing CO2 and N2, and OA/cyclen was confirmed to exhibit a reversible CO2-switching performance. The emulsification and viscosity reduction analyses elucidated that a molar ratio of OA/cyclen of 4:1 formed the “pseudo”-tetrameric surfactants, and the emulsions of water and heavy oil with OA/cyclen have good stability and low viscosity and can be destabilized quickly by introducing CO2. The findings reported in this study reveal that it is feasible to prepare CO2-switchable pseudo-tetrameric surfactants with viscosity-reducing properties by simple mixing, thus providing a pathway for the emulsification and demulsification of heavy oil by using the CO2-switchable “pseudo”-oligomeric surfactants.  相似文献   

6.
CO2诱导的开关型溶剂、溶质及表面活性剂是指在通入和排出CO2后,其溶液性质能发生可逆变化的新型溶剂、溶质及表面活性剂,是典型的环境刺激响应型智能化合物。本文综述了CO2诱导的开关型溶剂、溶质及表面活性剂的结构、性能及研究进展,并指出了这些开关型溶剂、溶质及表面活性剂的发展方向及应用前景等。  相似文献   

7.
The guanidine group-modified silica particles were used as emulsifier to obtain a CO2-responsive Pickering emulsion. To compare the wettability effect of the particles on the stability of the emulsion, both guanidine and alkyl chain were attached on the surface of silica particles. The influences of tension, particles concentration, oil-water fraction, NaCl concentration, and CO2 on Pickering emulsion properties were investigated. Although the particles did not decrease the surface and interfacial tensions of the air/oil-water interfaces, they attached on the oil–water interfaces and stabilized the emulsions at room temperature for at least 4 weeks. Addition of salt increased the emulsion stability and induced phase inversion at high salt concentration. The stabilization–destabilization cycles of the emulsion could be successively controlled by alternative CO2/heating triggers due to the protonation-deprotonation of guanidine groups on the particle surfaces.  相似文献   

8.
This research reported a CO2-switchable nanoemulsion that was formulated by dilution of water in oil microemulsion, which was formed by mixture of N,N-dimethyl oleoaminde-propylamine (DOAPA), sodium dodecyl sulphate (SDS), n-hexane, n-butanol, and water. A reversible switch process was observed between a monophasic nanoemulsion and complete phase separation at R = 1:1 with the CO2 and N2 bubbling alternately. The phase separation was not found, but the reversible switch between single phase nanoemulsion was detected by zeta potential, electrical conductivity, and dynamic light scattering at R = 1:1.5 and 1.5:1.  相似文献   

9.
CO2 flooding is a win-win technology, sequestrating greenhouse CO2 while producing a significant amount of crude oil to help defray the cost of CO2 sequestrating and enhancing oil recovery. However, due to the difference of sedimentary environment and poor properties of formations, physical properties of the crude oil and the effect of CO2 flooding are not always satisfactory in most oilfields of China. Therefore, in this article, to improve the understanding of the oil recovery mechanisms and feasibility of CO2 flooding in China, based on the oil and gas of Mao-3 oilfields, phase behavior of the CO2 and crude oil system was investigated. Parameters like saturated pressure, volume factor, gas oil ratio, and viscosity were measured and their relationships analyzed. Results show that crude oil of Mao-3 reservoir and CO2 has good mutual dissolution under reservoir conditions, and CO2 could expand the oil and reduce the oil viscosity greatly. As a result, formation energy could be enhanced and flow characteristics of the oil could be improved by CO2 flooding.  相似文献   

10.
Upon stimulus by CO2, CO2-switchable viscoelastic fluids experience a deliberate transition between non-viscous and highly viscous solution states. Despite attracting considerable recent attention, most such fluids have not been applied at a large- scale due to their high costs and/or complex synthesis processes. Here, we report the development of CO2-switchable viscoelastic fluids using commercially available sodium polyacrylate (NaPAA) and N,N-dimethyl ethanol amine (DMEA)-based switchable water. Upon bubbling CO2, into the solutions under study, DMEA molecules are protonated to generate quaternary ammonium salts, resulting in pronounced decreases in solutions viscosity and elasticity due to the influence of increased ionic strength on NaPAA molecular conformations. Upon removal of CO2 via introduction of N2, quaternary salts are deprotonated to tertiary amines, allowing recovery of fluid viscosity and elasticity to near the initial state. This work provides a simple approach to fabricating CO2-switchable viscoelastic fluids, widening the potential use of CO2 in stimuli-responsive applications.  相似文献   

11.
CO2 enhanced oil recovery (CO2-EOR) has become significantly crucial to the petroleum industry, in particular, CO2 miscible flooding can greatly improve the efficiency of EOR. Minimum miscibility pressure (MMP) is a vital factor affecting CO2 flooding, which determines the yield and economic benefit of oil recovery. Therefore, it is important to predict this property for a successful field development plan. In this study, a novel model based on molecular dynamics to determine MMP was developed. The model characterized a miscible state by calculating the ratio of CO2 and crude oil atoms that pass through the initial interface. The whole process was not affected by other external objective factors. We compared our model with several famous empirical correlations, and obtained satisfactory results—the relative errors were 8.53% and 13.71% for the two equations derived from our model. Furthermore, we found the MMPs predicted by different reference materials (i.e., CO2/crude oil) were approximately linear (R2 = 0.955). We also confirmed the linear relationship between MMP and reservoir temperature (TR). The correlation coefficient was about 0.15 MPa/K in the present study.  相似文献   

12.
The alarming levels of carbon dioxide (CO2) are an environmental problem that affects the economic growth of the world. CO2 emissions represent penalties and restrictions due to the high carbon footprint. Therefore, sustainable strategies are required to reduce the negative impact that occurs. Among the potential systems for CO2 capture are microalgae. These are defined as photosynthetic microorganisms that use CO2 and sunlight to obtain oxygen (O2) and generate value-added products such as biofuels, among others. Despite the advantages that microalgae may present, there are still technical–economic challenges that limit industrial-scale commercialization and the use of biomass in the production of added-value compounds. Therefore, this study reviews the current state of research on CO2 capture with microalgae, for which bibliometric analysis was used to establish the trends of the subject in terms of scientometric parameters. Technological advances in the use of microalgal biomass were also identified. Additionally, it was possible to establish the different cooperation networks between countries, which showed interactions in the search to reduce CO2 concentrations through microalgae.  相似文献   

13.
The essential oil extracted from Cinnamomum camphora leaves is a mixture of volatile compounds, mainly terpenes, and is widely used in medicine, perfume and chemical industries. In this study, the extraction processes of essential oil from Cinnamomum camphora leaves by steam distillation and supercritical CO2 extraction were summarized and compared, and the camphor tree essential oil was detected by GC/MS. The extraction rate of essential oil extracted by steam distillation is less than 0.5%, while that of supercritical CO2 extraction is 4.63% at 25 MPa, 45 °C and 2.5 h. GC/MS identified 21 and 42 compounds, respectively. The content of alcohols in the essential oil is more than 35%, and that of terpenoids is more than 80%. The steam extraction method can extract volatile substances with a low boiling point and more esters and epoxides; The supercritical method is suitable for extracting weak polar substances with a high alcohol content. Supercritical CO2 extraction can selectively extract essential oil components and effectively prevent oxidation and the escape of heat sensitive substances.  相似文献   

14.
在超临界CO2中形成微乳液可以克服CO2对高分子量和亲水性物质溶解能力差的缺点。碳氢表面活性剂成本低,对环境友好,利用碳氢表面活性剂形成超临界CO2微乳液有利于工业应用,但绝大部分碳氢表面活性剂不能形成微乳液,所以需要对碳氢表面活性剂进行选择和设计。本文介绍了微乳液的形成、表征和评价,从表面活性剂的亲CO2性能和界面活性两方面,综述了碳氢表面活性剂的设计思想和进展。另外介绍了助表面活性剂对形成超临界CO2微乳液的作用,并对常规碳氢表面活性剂在助表面活性剂的作用下形成超临界CO2微乳液的体系进行了综述。最后,介绍了含碳氢表面活性剂的混合表面活性剂在形成超临界CO2微乳液方面的研究情况。  相似文献   

15.
We have fabricated superhydrophobic zinc surface with reversible transformation between sliding state and adhesion by a simple hydrothermal method. Uniformly ZnO2 nanorod was obtained at 120°C. After self-assembling of a film of n-octadecanethiol, the surface with a water contact angle (CA) of 153 ± 2°, exhibited a nonwetting property. The surface showed switchable adhesion just upon introducing UV illumination and heating treatment in turn.  相似文献   

16.
In the context of an increased interest in the abatement of CO2 emissions generated by industrial activities, CO2 hydrogenation processes show an important potential to be used for the production of valuable compounds (methane, methanol, formic acid, light olefins, aromatics, syngas and/or synthetic fuels), with important benefits for the decarbonization of the energy sector. However, in order to increase the efficiency of the CO2 hydrogenation processes, the selection of active and selective catalysts is of utmost importance. In this context, the interest in graphene-based materials as catalysts for CO2 hydrogenation has significantly increased in the last years. The aim of the present paper is to review and discuss the results published until now on graphene-based materials (graphene oxide, reduced graphene oxide, or N-dopped graphenes) used as metal-free catalysts or as catalytic support for the thermocatalytic hydrogenation of CO2. The reactions discussed in this paper are CO2 methanation, CO2 hydrogenation to methanol, CO2 transformation into formic acid, CO2 hydrogenation to high hydrocarbons, and syngas production from CO2. The discussions will focus on the effect of the support on the catalytic process, the involvement of the graphene-based support in the reaction mechanism, or the explanation of the graphene intervention in the hydrogenation process. Most of the papers emphasized the graphene’s role in dispersing and stabilizing the metal and/or oxide nanoparticles or in preventing the metal oxidation, but further investigations are needed to elucidate the actual role of graphenes and to propose reaction mechanisms.  相似文献   

17.
Biocompatible skin wound dressing materials with long-term therapeutic windows and anti-infection properties have attracted great attention all over the world. The cooperation between essential oil and non-toxic or bio-based polymers was a promising strategy. However, the inherent volatility and chemical instability of most ingredients in essential oils make the sustained pharmacological activity of essential oil-based biomaterials a challenge. In this study, a kind of film nanocomposite loaded with patchouli essential oil (PEO-FNC) was fabricated. PEO-loaded mesoporous silica nanoparticles (PEO-MSNs) with drug load higher than 40 wt% were firstly prepared using supercritical CO2 cyclic impregnation (SCCI), and then combined with the film matrix consisting of polyvinyl alcohol and chitosan. The morphology of PEO-MSNs and PEO-FNC was observed by transmission and scanning electron microscope. The mechanical properties, including hygroscopicity, tensile strength and elongation at break (%), were tested. The release behavior of PEO from the film nanocomposite showed that PEO could keep releasing for more than five days. PEO-FNC exhibited good long-term (>48 h) antibacterial effect on Staphylococcus aureus and non-toxicity on mouse fibroblast (L929 cells), making it a promising wound dressing material.  相似文献   

18.
Wormlike micelles, which are linear aggregates created by the self-assembly of surfactants, may entangle to form dynamic three-dimensional network-like structures, endowing solutions with considerable macroscopic viscoelasticity. Recently, a pressing need has arisen to research a novel stimuli-responsive worm-like micelle that is efficient and environmentally friendly. CO2 is an inexpensive, abundant, non-toxic, biocompatible, and non-combustible gas, and it is anticipated that CO2 may serve as the trigger for stimuli-responsive worm-like micelles. In this paper, the formation of CO2-switchable pseudo-tetrameric surfactants, which subsequently self-assemble into CO2-switched wormlike micelles, is accomplished using a simple mixing of two commercial reagents, such as stearic acids and cyclen. The rheological characteristics switched by the use of CO2 are cycled between that of a low-viscosity (1.2 mPa·s) fluid and a viscoelastic fluid (worm-like micelles, 3000 mPa·s). This article expands the field of study on stimuli-responsive worm-like micelles.  相似文献   

19.
The anionic surfactant sodium oleate (NaOA) can self-assemble in aqueous solution in the presence of counter-ion inorganic salts to form wormlike micelles (WLMs), which exhibited viscoelastic behavior. In this paper, KCl was used to induce the formation of wormlike micelles with sodium oleate. In this process, we found that the addition of N, N-dimethylethanolamine (DMEA) can destroy the structure of WLMs leading significant decrease of viscosity. However, after introducing CO2 into the ternary solution (KCl-NaOA-DMEA), the WLMs can be regenerated due to the electrostatic interaction between the protonated DMEA and the anionic surfactants. The addition of sodium hydroxide (NaOH) causes the electrostatic interaction between OA- and DMEAH+ be destroyed, which results in the wormlike micelles becoming spherical micelles of lower viscosity. The transition of WLMs with high viscosity and low viscosity spherical micelles can be repeated several times by using CO2 and NaOH.  相似文献   

20.
采用硝酸铋和硫脲为反应物,通过添加不同的表面活性剂如Triton X-100+OP-10、TX-10、Triton X-100,用回流法合成了硫化铋纳米花。所得产物用XRD、EDS、TEM、SAED、SEM以及UV-Vis进行了表征。结果表明,经85~110 ℃回流反应3 h,可以得到结晶良好、具有各种形貌的正交晶相的硫化铋纳米花。经计算,其晶胞参数为a=0.439 34 nm, b=0.965 64 nm, c=1.118 5 nm。UV-Vis分析表明,硫化铋  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号