首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 2 毫秒
1.
We investigate the evolution of polymer structure and its influence on uniaxial anisotropic stress under time-varying uniaxial strain, and the role of external control variables such as temperature, strain rate, chain length, and density, using molecular dynamics simulation. At temperatures higher than glass transition, stress anisotropy in the system is reduced even though the bond stretch is greater at higher temperatures. There is a significant increase in the stress level with increasing density. At higher densities, the uncoiling of the chains is suppressed and the major contribution to the deformation is by internal deformation of the chains. At faster rates of loading stress anisotropy increases. The deformation mechanism is mostly due to bond stretch and bond bending rather than overall shape and size. Stress levels increase with longer chain length. There is a critical value of the functionality of the cross-linkers beyond which the uniaxial stress developed increases caused primarily by bond stretching due to increased constraint on the motion of the monomers. Stacking of the chains in the system also plays a dominant role in the behaviour in terms of excluded volume interactions. Low density, high temperature, low values of functionality of cross-linkers, and short chain length facilitate chain uncoiling and chain slipping in cross-linked polymers.  相似文献   

2.
本工作建立了外加应力作用下UO2中空洞演化的相场模型.首先,使用摄动迭代法求解了弹性平衡方程,对外加应力下单个空洞周围的应力分布进行了计算,结果表明空洞边缘有应力集中现象,模拟得到的应力分布和解析解一致.然后,利用相场方法模拟了不同外加应力下单个空洞的演化过程,结果表明随着外加应力的增大,空洞的生长速度加快.最后,研究了外加应力对多晶体系中晶粒长大和空洞演化的影响,结果表明,不同晶粒内的应力大小不同,应力越小的晶粒越容易长大,尺寸越大的空洞的边缘应力也越大.晶间空洞与弯曲晶界存在相互作用,一方面晶界附近的空洞会生长成透镜状,另一方面空洞对晶界也有钉扎作用,能减缓晶界的迁移.此外,外加应力会加速多晶系统中空洞的生长,并且本文计算得到了外加应力与空洞半径的关系,发现外加应力越大,空洞的生长越快.  相似文献   

3.
This article addresses the problem of parametric time-domain identification and dynamic analysis for time-varying (TV) mechanical structures under unobservable random excitation. The methods presented are based on time-dependent autoregressive moving average (TARMA) models, and are classified according to the mathematical structure imposed on the TV parameter evolution as unstructured parameter evolution, stochastic parameter evolution, and deterministic parameter evolution. The features and relative merits of each class are outlined. A representative method from each is then assessed through its application to the identification and dynamic analysis of a laboratory TV structure consisting of a beam with a mass moving on it. The results are mutually compared and contrasted to those obtained through “frozen-configuration” (multiple experiment) baseline identification.  相似文献   

4.
Raman scattering analysis is used to study the residual stress in metal-induced crystallized amorphous silicon thin film. The influence of the crystallization parameters on thin film properties is investigated as a function of annealing temperature, annealing time, and nickel top-seed-layer thickness. Thin films produced under optimal annealing conditions are measured to have crystallization efficiency of about 98%, which is full crystallization. Residual stress analysis reveals clear stress reduction with prolonged annealing time and Ni capping layer thickness. A very low tensile stress of about 87 MPa is achieved. The relationships between optimal crystallization temperature, crystallization time, and Ni-layer thickness are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号