首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A stepwise approach for determining the model applicability domain is proposed. Four stages are applied to account for the diversity and complexity of the current SAR/QSAR models, reflecting their mechanistic rationality (including metabolic activation of chemicals) and transparency. General parametric requirements are imposed in the first stage, specifying in the domain only those chemicals that fall in the range of variation of the physicochemical properties of the chemicals in the training set. The second stage defines the structural similarity between chemicals that are correctly predicted by the model. The structural neighborhood of atom-centered fragments is used to determine this similarity. The third stage in defining the domain is based on a mechanistic understanding of the modeled phenomenon. Here, the model domain combines the reliability of specific reactive groups hypothesized to cause the effect and the domain of explanatory variables determining the parametric requirements in order for functional groups to elicit their reactivity. Finally, the reliability of simulated metabolism (metabolites, pathways, and maps) is taken into account in assessing the reliability of predictions, if metabolic activation of chemicals is a part of the (Q)SAR model. Some of the stages of the proposed approach for defining the model domain can be eliminated depending on the availability and quality of the experimental data used to derive the model, the specificity of (Q)SARs, and the goals of their ultimate application. The performance of the proposed definition of the model domain is tested using several examples of (Q)SARs that have been externally validated, including models for predicting acute toxicity, skin sensitization, and biodegradation. The results clearly showed that credibility in predictions of QSAR models for chemicals belonging to their domain is much higher than for chemicals outside this domain.  相似文献   

3.
Abstract

One of the key challenges of Canada’s Chemicals Management Plan (CMP) is assessing chemicals with limited/no empirical hazard data for their risk to human health. In some instances, these chemicals have not been tested broadly for their toxicological potency; as such, limited information exists on their potential to induce human health effects following exposure. Although (quantitative) structure activity relationship ((Q)SAR) models are able to generate predictions to address data gaps for certain toxicological endpoints, the confidence in predictions also needs to be addressed. One way to address this issue is to apply a chemical space approach. This approach uses international toxicological databases, for example, those available in the Organisation for Economic Co-operation and Development (OECD) QSAR Toolbox. The approach,assesses a model’s ability to predict the potential hazards of chemicals that have limited hazard data that require assessment under the CMP when compared to a larger, data-rich chemical space that is structurally similar to chemicals of interest. This evaluation of a model’s predictive ability makes (Q)SAR analysis more transparent and increases confidence in the application of these predictions in a risk-assessment context. Using this approach, predictions for such chemicals obtained from four (Q)SAR models were successfully classified into high, medium and low confidence levels to better inform their use in decision-making.  相似文献   

4.
5.
Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR), collec- tively referred to as (Q)SARs, play an important role in ecological risk assessment (ERA) of organic chemicals. (Q)SARs can fill the data gap for physical-chemical, environmental behavioral and ecotoxicological parameters of organic compounds; they can decrease experimental expenses and reduce the extent of experimental testing (especially animal testing); they can also be used to assess the uncertainty of the experimental data. With the development for several decades, (Q)SARs in envi- ronmental sciences show three features: application orientation, multidisciplinary integration, and in- telligence. Progress of (Q)SAR technology for ERA of toxic organic compounds, including endpoint selection and mathematic methods for establishing simple, transparent, easily interpretable and portable (Q)SAR models, is reviewed. The recent development on defining application domains and diagnosing outliers is summarized. Model characterization with respect to goodness-of-fit, stability and predictive power is specially presented. The purpose of the review is to promote the development of (Q)SARs orientated to ERA of organic chemicals.  相似文献   

6.
In aquatic toxicology, QSAR models are generally designed for chemicals presenting the same mode of toxic action. Their proper use provides good simulation results. Problems arise when the mechanism of toxicity of a chemical is not clearly identified. Indeed, in that case, the inappropriate application of a specific QSAR model can lead to a dramatic error in the toxicity estimation. With the advent of powerful computers and easy access to them, and the introduction of soft modeling and artificial intelligence in SAR and QSAR, radically different models, designed from large noncongeneric sets of chemicals have been proposed. Some of these new QSAR models are reviewed and their originality, advantages, and limitations are stressed.  相似文献   

7.
Abstract

In aquatic toxicology, QSAR models are generally designed for chemicals presenting the same mode of toxic action. Their proper use provides good simulation results. Problems arise when the mechanism of toxicity of a chemical is not clearly identified. Indeed, in that case, the inappropriate application of a specific QSAR model can lead to a dramatic error in the toxicity estimation. With the advent of powerful computers and easy access to them, and the introduction of soft modeling and artificial intelligence in SAR and QSAR, radically different models, designed from large non-congeneric sets of chemicals have been proposed. Some of these new QSAR models are reviewed and their originality, advantages, and limitations are stressed.  相似文献   

8.
9.
10.
11.
An integrated framework of data analysis has been proposed to systematically address the determination of the domain of applicability (DA) of some commercial Quantitative Structure Activity Relationship ((Q)SAR) models based on the structure of test chemicals. This framework forms one of the important steps in dealing with the growing concerns on reliability of model-based predictions on toxicity of chemicals specifically in the regulatory context. The present study uses some of the well-known mutagenicity and carcinogenicity models that are available within the Casetox (MultiCASE Inc.) and TOPKAT (Accelrys Software Inc.) programs. The approach enumerated in this paper employs chemoinformatics tools that facilitate comparisons of key structural features as well as application of cluster analysis techniques. The approach has been illustrated using a set of eleven chemical structures selected from the Canadian Domestic Substances List (DSL) that are not present in the model training sets, and the efficacy of the approach has also been assessed using seven chemicals with known toxicities. The methodologies presented here could help address the issue of DA of complex (Q)SAR models and at the same time, serve as useful tools for regulators to make a preliminary assessment of (Q)SAR based systems thereby helping the process of hazard-based regulatory assessments of chemicals.  相似文献   

12.
A number of chemicals released into the environment have the potential to disturb the normal functioning of the endocrine system. These chemicals termed endocrine disruptors (EDs) act by mimicking or antagonizing the normal functions of natural hormones and may pose serious threats to the reproductive capability and development of living species. Batteries of laboratory bioassays exist for detecting these chemicals. However, due to time and cost limitations, they cannot be used for all the chemicals which can be found in the ecosystems. SAR and QSAR models are particularly suited to overcome this problem but they only deal with specific targets/endpoints. The interest to account for profiles of endocrine activities instead of unique endpoints to better gauge the complexity of endocrine disruption is discussed through a SAR study performed on 11,416 chemicals retrieved from the US-NCI database and for which 13 different PASS (Prediction of Activity Spectra for Substances) endocrine activities were available. Various multivariate analyses and graphical displays were used for deriving structure-activity relationships based on specific structural features.  相似文献   

13.
14.
A wide variety of artificial intelligence (AI) and structure-activity relationship (SAR) approaches have been applied to tackling the general problem of predicting rodent chemical carcinogenicity. Given the diversity of chemical structures and mechanisms relative to this endpoint, the shared challenge of these approaches is to accurately delineate classes of active chemicals representing distinct biological and chemical mechanism domains, and within those classes determine the structural features and properties responsible for modulating activity. In the following discussion, we present a survey of AI and SAR approaches that have been applied to the prediction of rodent carcinogenicity, and discuss these in general terms and in the context of the results of two organized prediction exercises (PTE-1 and PTE-2) sponsored by the US National Cancer Institute/National Toxicology Program. Most models participating in these exercises were successful in identifying major structural-alerting classes of active carcinogens, but failed in modeling the more subtle modifiers to activity within those classes. In addition, methods that incorporated mechanism-based reasoning or biological data along with structural information outperformed models limited to structural information exclusively. Finally, a few recent carcinogenicity-modeling efforts are presented illustrating progress in tackling some aspects of the carcinogenicity prediction problem. The first example, a QSAR model for predicting carcinogenic potency of aromatic amines, illustrates that success is possible within well-represented classes of carcinogens. From the second example, a newly developed FDA/OTR MultiCASE model for predicting the carcinogenicity of pharmaceuticals, we conclude that the definitions of biological activity and nature of chemicals in the training set are important determinants of the predictive success and specificity/sensitivity characteristics of a derived model.  相似文献   

15.
An integrated framework of data analysis has been proposed to systematically address the determination of the domain of applicability (DA) of some commercial Quantitative Structure Activity Relationship ((Q)SAR) models based on the structure of test chemicals. This framework forms one of the important steps in dealing with the growing concerns on reliability of model-based predictions on toxicity of chemicals specifically in the regulatory context. The present study uses some of the well-known mutagenicity and carcinogenicity models that are available within the Casetox (MultiCASE Inc.) and TOPKAT (Accelrys Software Inc.) programs. The approach enumerated in this paper employs chemoinformatics tools that facilitate comparisons of key structural features as well as application of cluster analysis techniques. The approach has been illustrated using a set of eleven chemical structures selected from the Canadian Domestic Substances List (DSL) that are not present in the model training sets, and the efficacy of the approach has also been assessed using seven chemicals with known toxicities. The methodologies presented here could help address the issue of DA of complex (Q)SAR models and at the same time, serve as useful tools for regulators to make a preliminary assessment of (Q)SAR based systems thereby helping the process of hazard-based regulatory assessments of chemicals.  相似文献   

16.
In this study, structure–activity relationship (SAR) models have been established for qualitative and quantitative prediction of the blood–brain barrier (BBB) permeability of chemicals. The structural diversity of the chemicals and nonlinear structure in the data were tested. The predictive and generalization ability of the developed SAR models were tested through internal and external validation procedures. In complete data, the QSAR models rendered ternary classification accuracy of >98.15%, while the quantitative SAR models yielded correlation (r2) of >0.926 between the measured and the predicted BBB permeability values with the mean squared error (MSE) <0.045. The proposed models were also applied to an external new in vitro data and yielded classification accuracy of >82.7% and r2 > 0.905 (MSE < 0.019). The sensitivity analysis revealed that topological polar surface area (TPSA) has the highest effect in qualitative and quantitative models for predicting the BBB permeability of chemicals. Moreover, these models showed predictive performance superior to those reported earlier in the literature. This demonstrates the appropriateness of the developed SAR models to reliably predict the BBB permeability of new chemicals, which can be used for initial screening of the molecules in the drug development process.  相似文献   

17.
18.
Risk assessment for most human health effects is based on the threshold of a toxicological effect, usually derived from animal experiments. The Threshold of Toxicological Concern (TTC) is a concept that refers to the establishment of a level of exposure for all chemicals below which there would be no appreciable risk to human health. When carefully applied, the TTC concept can provide a means of waiving testing based on knowledge of exposure limits. Two main approaches exist; the first of these is a General Threshold of Toxicological Concern; the second approach is a TTC in relation to structural information and/or toxicological data of chemicals. The structural scheme most routinely used is that of Cramer and co-workers from 1978. Recently this scheme was encoded into a software program called Toxtree, specifically commissioned by the European Chemicals Bureau (ECB). Here we evaluate two published datasets using Toxtree to demonstrate its concordance and highlight potential software modifications. The results were promising with an overall good concordance between the reported classifications and those generated by Toxtree. Further evaluation of these results highlighted a number of inconsistencies which were examined in turn and rationalised as far as possible. Improvements for Toxtree were proposed where appropriate. Notable of these is a necessity to update the lists of common food components and normal body constituents as these accounted for the majority of false classifications observed. Overall Toxtree was found to be a useful tool in facilitating the systematic evaluation of compounds through the Cramer scheme.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号