首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Nitrous oxide is an important greenhouse gas and its origin and fate are thus of broad interest. Most studies on emissions of nitrous oxide from soils focused on fluxes between soil and atmosphere and hence represent an integration of physical and biological processes at different depths of a soil profile. Analysis of N2O concentration and isotope signature along soil profiles was suggested to improve the localisation of sources and sinks in soils as well as underlying processes and could therefore extend our knowledge on processes affecting surface N2O fluxes. Such a mechanistic understanding would be desirable to improve N2O mitigation strategies and global N2O budgets. To investigate N2O dynamics within soil profiles of two contrasting (semi)natural ecosystem types (a temperate acidic fen and a Norway spruce forest), soil gas samplers were constructed to meet the different requirements of a water-saturated and an unsaturated soil, respectively. The samplers were installed in three replicates and allowed soil gas sampling from six different soil depths. We analysed soil air for N2O concentration and isotope composition and calculated N2O net turnover using a mass balance approach and considering diffusive fluxes. At the fen site, N2O was mainly produced in 30–50 cm soil depth. Diffusion to adjacent layers above and below indicated N2O consumption. Values of δ15N and δ18O of N2O in the fen soil were always linearly correlated and their qualitative changes within the profile corresponded with the calculated turnover processes, suggesting further reduction of N2O. In the spruce forest, highest N2O production occurred in the topsoil, but there was also notable production occurring in the subsoil at a depth of 70 cm. Changes in N2O isotope composition as to be expected from local production and consumption processes within the soil profile did hardly occur, though. This was presumably caused by high diffusive fluxes and comparatively low net turnover, as isotope signatures approached values measured for ambient N2O towards the topsoil. Our results demonstrate a highly variable influence of diffusive versus production/consumption processes on N2O concentration and isotope composition, depending on the type of ecosystem. This finding indicates the necessity of further N2O concentration and isotope profile investigations in different types of natural and anthropogenic ecosystems in order to generalise our mechanistic understanding of N2O exchange between soil and atmosphere.  相似文献   

2.
When conducting 13CO2 plant–soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ13C measurements of soil respiration (δ13CSR) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, 13CO2 is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix 13CO2 contamination and canopy recycling on soil 13CO2 efflux during 13CO2 plant–soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of 13C tracer into the soil chamber during a 13CO2 canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO2 isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ13C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, 13CO2 was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ13CSR fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ13CSR decay of physical 13CO2 back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ13CSR of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy, revealed that 13CO2 recycling at canopy level had no effect on δ13CSR dynamics.  相似文献   

3.
Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO2 and water vapour were observed. The isotope ratios of both CO2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ13C–CO2 and δ18O–CO2 increased, while δ2H–H2Ov and δ18O–H2Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO2 and H2Ov could be used as a tracer of meteorological information.  相似文献   

4.
Measurement of soil-respired CO2 at high temporal resolution and sample density is necessary to accurately identify sources and quantify effluxes of soil-respired CO2. A portable sampling device for the analysis of δ13C values in the field is described herein.

CO2 accumulated in a soil chamber was batch sampled sequentially in four gas bags and analysed by Wavelength-Scanned Cavity Ring-down Spectrometry (WS-CRDS). A Keeling plot (1/[CO2] versus δ13C) was used to derive δ13C values of soil-respired CO2. Calibration to the δ13C Vienna Peedee Belemnite scale was by analysis of cylinder CO2 and CO2 derived from dissolved carbonate standards. The performance of gas-bag analysis was compared to continuous analysis where the WS-CRDS analyser was connected directly to the soil chamber.

Although there are inherent difficulties in obtaining absolute accuracy data for δ13C values in soil-respired CO2, the similarity of δ13C values obtained for the same test soil with different analytical configurations indicated that an acceptable accuracy of the δ13C data were obtained by the WS-CRDS techniques presented here. Field testing of a variety of tropical soil/vegetation types, using the batch sampling technique yielded δ13C values for soil-respired CO2 related to the dominance of either C3 (tree, δ13C=?27.8 to?31.9 ‰) or C4 (tropical grass, δ13C=?9.8 to?13.6 ‰) photosynthetic pathways in vegetation at the sampling sites. Standard errors of the Keeling plot intercept δ13C values of soil-respired CO2 were typically<0.4 ‰ for analysis of soils with high CO2 efflux (>7–9 μmol m?2 s?1).  相似文献   

5.
Pulse labelling experiments provide a common tool to study short-term processes in the plant–soil system and investigate below-ground carbon allocation as well as the coupling of soil CO2 efflux to photosynthesis. During the first hours after pulse labelling, the measured isotopic signal of soil CO2 efflux is a combination of both physical tracer diffusion into and out of the soil as well as biological tracer release via root and microbial respiration. Neglecting physical back-diffusion can lead to misinterpretation regarding time lags between photosynthesis and soil CO2 efflux in grassland or any ecosystem type where the above-ground plant parts cannot be labelled in gas-tight chambers separated from the soil. We studied the effects of physical 13CO2 tracer back-diffusion in pulse labelling experiments in grassland, focusing on the isotopic signature of soil CO2 efflux. Having accounted for back-diffusion, the estimated time lag for first tracer appearance in soil CO2 efflux changed from 0 to 1.81±0.56 h (mean±SD) and the time lag for maximum tracer appearance from 2.67±0.39 to 9.63±3.32 h (mean±SD). Thus, time lags were considerably longer when physical tracer diffusion was considered. Using these time lags after accounting for physical back-diffusion, high nocturnal soil CO2 efflux rates could be related to daytime rates of gross primary productivity (R2=0.84). Moreover, pronounced diurnal patterns in the δ13C of soil CO2 efflux were found during the decline of the tracer over 3 weeks. Possible mechanisms include diurnal changes in the relative contributions of autotrophic and heterotrophic soil respiration as well as their respective δ13C values. Thus, after accounting for physical back-diffusion, we were able to quantify biological time lags in the coupling of photosynthesis and soil CO2 efflux in grassland at the diurnal time scale.  相似文献   

6.
We present a nondispersive infrared spectrometer (NDIRS) for the measurement of the 13CO2/12CO2-ratio in breath samples. A commercial NDIR spectrometer for CO2 concentration measurements in industrial process control was modified using two separate optical channels for the 13CO2 and 12CO2 detection. Cross interference due to overlapping absorption lines of both isotopic gases was successfully eliminated. The sensitivity of this device is ± 0.4‰ of the 13CO2/12CO2-ratio in a range of 2.5 to 5% of total CO2. This is sufficient for biomedical applications. Our spectrometer is small in size, cheap and simple to operate and thus a true alternative to isotope ratio mass spectrometers (IRMS). Several biomedical applications with breath samples were demonstrated and were compared in very good agreement with IRMS.  相似文献   

7.
Regular measurements of atmospheric CO 2 mixing ratios and their carbon isotope composition (13C/12C and 14C/12C ratios) performed between 2005 and 2009 at two sites of contrasting characteristics (Krakow and the remote mountain site Kasprowy Wierch) located in southern Poland were used to derive fossil fuel-related and biogenic contributions to the total CO 2 load measured at both sites. Carbon dioxide present in the atmosphere, not coming from fossil fuel and biogenic sources, was considered ‘background’ CO 2. In Krakow, the average contribution of fossil fuel CO 2 was approximately 3.4%. The biogenic component was of the same magnitude. Both components revealed a distinct seasonality, with the fossil fuel component reaching maximum values during winter months and the biogenic component shifted in phase by approximately 6 months. The partitioning of the local CO 2 budget for the Kasprowy Wierch site revealed large differences in the derived components: the fossil fuel component was approximately five times lower than that derived for Krakow, whereas the biogenic component was negative in summer, pointing to the importance of photosynthetic sink associated with extensive forests in the neighbourhood of the station. While the presented study has demonstrated the strength of combined measurements of CO 2 mixing ratios and their carbon isotope signature as efficient tools for elucidating the partitioning of local atmospheric CO 2 loads, it also showed the important role of the land cover and the presence of the soil in the footprint of the measurement location, which control the net biogenic surface CO 2 fluxes.  相似文献   

8.
We report on the application of a compact and field-deployable instrument, based on a continuous-wave fiber-coupled Telecom external cavity diode laser, to measure the 13C/12C isotope ratio in CO2 from a wood-based combustion. Carbon dioxide, the most important greenhouse gas, is a major product of combustion. The measurements of the 13C/12C isotopic ratio in CO2 from combustion emission permit one to identify the CO2 source and to study the temporal and spatial variations of pollution in the atmosphere. The average value of the 13CO2/12CO2 ratio is found to be (1.1011±0.0024)%. The corresponding δ-value relative to PDB standard is (−20.17±2.14)‰, which is in good agreement with the typical value of (−25±2)‰ for wood. Simultaneous monitoring of multiple species from gas emission has been performed using direct-absorption spectroscopy. The concentrations of C2H2, CO, CO2 and H2O were determined on the basis of integrated absorbance measured by least-squares fitting a Voigt lineshape to experimental absorption spectra.  相似文献   

9.
Oxygen and carbon isotopic compositions of tree ring cellulose (δ13Ccell and δ18Ocell) were measured for pines growing at four sites in east Germany. Three sites differed markedly in soil water availability within a short distance and the fourth site served as a reference. The choice of the sites was guided by the desire to detect effects of air pollution on the long-term trend of isotopic compositions and to examine the influence of soil water availability on the relationship between the carbon and oxygen isotope ratios. Locations in east Germany are particularly well suited for the study of pollution effects because there was a steady increase in environmental contamination until the German Reunification in 1990, followed by a sharp decline due to the implementation of stricter environmental standards.

The long-term trend of δ13Ccell showed an extraordinary increase in the period 1945–1990 and a rapid decrease after 1990, whereas δ18Ocell remained nearly constant. The increase of δ13Ccell is explained by secondary fractionation caused by phytotoxicity of SO2. Two effects are mainly responsible for the secondary fractionation under SO2 exposure: increase of dark respiration, and changes in photosynthate allocation and partitioning. Both effects do not influence δ18Ocell. Furthermore, a significant positive correlation between the year-to-year variations of carbon and oxygen isotope ratios (δ13Cresid and δ18Oresid) has been found for all sites. The slopes of the relationship between δ13Cresid and δ18Oresid differ insignificantly. It is concluded that this relationship is not influenced by soil water availability but by climatic variables.  相似文献   

10.
Temperate ecosystems are susceptible to drought events. The effect of a severe drought (104 days) followed by irrigation on the plant C uptake, its assimilation and input of C in soil were examined using a triple 13CO2 pulse-chase labelling experiment in model grassland and heathland ecosystems. First 13CO2 pulse at day 0 of the experiment revealed much higher 13C tracer uptake for shoots, roots and soil compared to the second pulse (day 44), where all plants showed significantly lower 13C tracer uptake. After the third 13CO2 pulse (day 70), very low 13C uptake in shoots led to a negligible allocation of 13C into roots and soil. During irrigation after the severe drought, the 13C tracer that was allocated in plant tissues during the second and third pulse labelling was re-allocated in roots and soil, as soon as the irrigation started. This re-allocation was higher and longer lasting in heathland compared to grassland ecosystems.  相似文献   

11.
Surface modification of activated carbons for CO2 capture   总被引:1,自引:0,他引:1  
The reduction of anthropogenic CO2 emissions to address the consequences of climate change is a matter of concern for all developed countries. In the short term, one of the most viable options for reducing carbon emissions is to capture and store CO2 at large stationary sources. Adsorption with solid sorbents is one of the most promising options. In this work, two series of materials were prepared from two commercial activated carbons, C and R, by heat treatment with gaseous ammonia at temperatures in the 200-800 °C range. The aim was to improve the selectivity and capacity of the sorbents to capture CO2, by introducing basic nitrogen-functionalities into the carbons. The sorbents were characterised in terms of texture and chemical composition. Their surface chemistry was studied through temperature-programmed desorption tests and X-ray photoelectron spectroscopy. The capture performance of the carbons was evaluated by using a thermogravimetric analyser to record mass uptakes by the samples when exposed to a CO2 atmosphere.  相似文献   

12.
A newly developed isotope selective nondispersive infrared (NDIR) spectrometer for the measurement of 13CO2 and 12CO2 concentrations in breath samples was applied as a low cost and very simple to operate alternative to isotope ratio mass spectrometry (IRMS). We used this device for several biomedical applications ([13C]urea breath test, [13C]leucine metabolism, [13C]methacetin catabolism of rats) and found that the results agree very well with IRMS.  相似文献   

13.
By photochemical dissociation of the rare carbon isotope component of CHClF2 by means of a CO2 laser with an average power of 150 W, Q-switched at 10 kHz, we have demonstrated the separation of more than 1 mol of 13C, enriched to 50% (2 mol of total carbon). It is contained in about 1 mol (101 g) of the product C2F4. The total throughput of the starting material was 29 kg. The experiment was run day and night for 2 weeks, almost only controlled by a computer. We obtained production rates of 5 mmol/h, corresponding to about 0.5 kg 13C per year.  相似文献   

14.
Abstract

Apple snails Pomacea lineata (SPIX 1827) are widespread in the tropical regions of Brazil as well as in the Pantanal wetland of Mato Grosso in the western part of the country. They have a key position in the Pantanal food web and serve as food for many animals e.g. fishes, birds, and caimans. However, little is known about their feeding preferences and growth rates. Stable isotopes have been used successfully on numerous studies as food source indicator. Therefore, the δ15N and δ13C values of snails from 0.45 to 3.03cm in length, which were collected in the rainy season from March through May, were analyzed. Snails signatures revealed ambiguous evidence for food preferences. δ15N and δ13C values ranged between ?2.8 and 12.4‰ and between ?24.2 and ?16.4‰, respectively. This range of values mirrors the highly variable isotope values of possible food sources comprising C3 and C4 macrophytes. To test whether all common food sources were similarly assimilated, feeding experiments with different diets were conducted. Snail eggs were reared in tanks and offered different but single plants. Snails fed different diets and δ13C values of the food were reflected in the animal tissue. Growth varied considerably in experiments with different diets indicating the preference for certain food sources. Also, the fractionation of nitrogen isotopes between food and animal varied from 0.1 to 17.0‰. The results are explained by different feeding habits, and it is supposed that animals fed either on the plant itself or on bacteria mats growing in the tanks. In an additional experiment juvenile snails were offered one single food with a distinctive C4 grass signature. These snails did not grow detectably, but nevertheless isotope signatures approached to values of the diet.  相似文献   

15.
We have obtained laser action on 34 far infrared lines for the first time in fully deuterated methyl alcohol with the13C isotope (13CD3OD), and we have measured the frequency of 13 lines. The molecule was pumped by a cw CO2 laser. We have measured the wavelength, the relative polarization, the relative intensity of most lines, the frequency, and the CO2 pump frequency offset of the strongest lines. The new lines are distributed in the wavelength region from 75.27 m to 464.7 m.Supported in part by a joint grant with the U.S. National Science Foundation grant # INT 80-19014 and the Brazilian Conselho Nacional de Pesquisas (CNPq).  相似文献   

16.
Twenty-five new laser lines have been obtained in the wavelength region from 155 to 830 μm by optically pumping the CD2Cl2 (deuterated dichloromethane) molecule with a CW CO2 laser having a tunability range of 300 MHz. The wavelength, polarization relative to that of CO2 pumping radiation, and offset relative to the CO2 center frequency were determined for all of the new lines and some other already known laser emissions. For all of them we give also the relative intensity and the optimum pressure of operation. Permanent address: Depto de Física e Química da FEIS — UNESP 15.378-000 Ilha Solteira-SP, Brazil  相似文献   

17.
本文利用红外光解离光谱研究了第三族金属氧化物离子对二氧化碳分子的转化机制. 研究表明,对于[ScO(CO2)n]+体系,在n≤4时,形成了溶剂化结构;在n=5时,形成了碳酸盐结构,实现了二氧化碳的转化. 对于[YO(CO2)n]+体系,需要4个二氧化碳分子就可以实现二氧化碳的转化. 而在[YO(CO2)n]+体系中,只发现了溶剂化结构,没有观察到碳酸盐结构. 理论计算表明,[YO(CO2)n]+体系拥有最小的溶剂化结构向碳酸盐结构转化能垒,[LaO(CO2)n]+体系拥有最大的溶剂化结构向碳酸盐结构转化能垒. 本文从分子水平揭示了不同金属氧化物离子对二氧化碳分子转化的影响规律.  相似文献   

18.
The usefulness of different ways of water removal in off-line sample preparation of human breath samples for 13CO2 breath tests was examined and compared. Cryogenic water trapping and water removal with common desiccants like silicagel blue, Mg(ClO4)2, and molecular sieves were checked for reliability and reproducibility. With silicagel blue and Mg(ClO4)2 memory effects for 13C content were observed. The use of molecular sieve 4 Å and 5 Å led to tremendous carbon isotope fractionation. Molecular sieve 3 Å was found to be an excellent alternative to the established use of Mg(ClO4)2 and of cryogenic water trapping.  相似文献   

19.
The possibility of remote detection of SO2 in the 9-μm region of the spectrum by means of a TEA CO2 laser was theoretically and experimentally investigated with regard to the real state of the atmosphere and the contribution of background concentrations of H2O, CO2 and NH3 to absorption. For sounding along short paths (2L=2 km), the method of detection of small concentrations of SO2 (at the MPC level) with the use of the lines of the CO2-molecule regular transitions (00o1–02o0 band) has been devised and experimentally tested. It is shown that in sounding along longer paths (2L=6 km), a noticeable increase in sensitivity can be achieved by the generation lines of the CO2-molecule sequential 00o2–02o1 band. B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 4, pp. 508–515, July–August, 1998.  相似文献   

20.
Absolute frequency measurements of a CO2 laser stabilized on saturated absorption resonances of CO2 laser lines are reported. They were performed using a femtosecond-laser frequency comb generator and two laser diodes at 852 and 782 nm as intermediate oscillators, with their frequency difference phase-locked to the CO2 laser. Twenty 12C16O2 laser lines in the P and R bands at 9 μm were measured with a relative uncertainty of a few 10−12 limited by the CO2 frequency reproducibility. A new determination of the CO2 molecular constants was obtained from these data and previous measurements in the 10 μm band. The CO2 frequency grid was also calculated, with an improvement of two orders of magnitude compared to the previous grid of Maki et al. [J. Mol. Spectrosc. 167 (1994) 211].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号