首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
紫花苜蓿粗蛋白和粗纤维近红外分析模型的建立   总被引:2,自引:0,他引:2  
采用近红外漫反射光谱技术,结合偏最小二乘法(PLS),以152个来源不同的紫花苜蓿样品建立了粗蛋白和粗纤维含量的近红外定量分析校正模型。在近红外光谱范围内(950~1 650 nm)对紫花苜蓿样品采集光谱数据时,分别设置了粗磨样、细磨样两种样品的状态和1,2,5 nm三种光谱扫描间隔,对建立的模型进行准确性和重复性的验证,比较其优劣。结果显示:光谱扫描时样品为细磨样,光谱扫描间隔为2 nm时所建立的粗蛋白和粗纤维含量的校正模型最佳,其相关系数(R2cal)分别是0.97和0.94,最佳因素数时的定标标准差(SECV)分别是0.42和0.78。所建近红外定量分析模型对独立检验集样品粗蛋白和粗纤维含量的预测值与化学值的相关系数(R2val)分别为0.96和0.92,预测标准差(SEP)分别为0.43和0.79。该研究结果表明:利用近红外漫反射光谱法测定紫花苜蓿内在主要品质性状是可行的,为紫花苜蓿粗蛋白和粗纤维含量的检验提供了新的方法模式。  相似文献   

2.
基于高光谱成像的牧草粗蛋白含量检测研究   总被引:1,自引:0,他引:1  
粗蛋白(CP)是评价牧草营养价值和品质参数的关键指标。快速、准确地对牧草中粗蛋白含量进行评估在畜牧业生产研究中具有重要意义。为确定牧草粗蛋白含量的高光谱特征波段及最优检测模型,研究分别于2017年5月至9月间在黑龙江省杜尔伯特自治区的人工牧草场(羊草)内每月随机选取35个样本,5个月共采集175个样本。采样时在样本点处放置1 m×1 m的样方,将样方内所有牧草全部齐地面收割采集后称重并冷藏保存。将样本带回实验室后,立即进行牧草叶片高光谱图像采集,同时采用凯氏定氮法对采集的牧草样本进行粗蛋白化学值测定,以此建立牧草粗蛋白含量高光谱数据集。研究首先通过Savitzky-Golay卷积平滑(SG)、多元散射校正(MSC)、变量标准化(SNV)、一阶导数(1-Der)和直接正交信号校正(DOSC)方法5种预处理方法对高光谱数据进行处理后分别建立偏最小二乘回归(PLSR)检测模型,从中确定最优预处理方法。利用最优预处理结果,分别采用连续投影算法(SPA)和随机蛙跳算法(RF)进行牧草粗蛋白含量的特征波段选择,并利用选择结果分别进一步建立PLSR模型,以此确定适合粗蛋白含量的特征波段选择方法,确定最优高光谱检测模型。结果表明,在五种高光谱预处理方法中,基于SNV方法预处理后所建立的高光谱PLSR模型表现最优(R2-P=0.929,RMSE-P=6.344 mg·g-1,RPD=4.204)。利用连续投影算法筛选的粗蛋白含量特征波长为30个,分布于530~700和940~1 000 nm范围内。经随机蛙跳算法确定的粗蛋白含量特征波段为6个,分别为826.544,827.285,828.766,971.012,972.494和973.235 nm。因此,该研究中牧草粗蛋白含量最优高光谱检测模型为SNV-RF-PLSR(R2-P=0.933,RMSE-P=6.034 mg·g-1,RPD=4.322),模型精度较高。该研究结果为牧草粗蛋白含量的高光谱检测提供了最优模型和理论基础,同时为指导草业生产开拓了新的技术思路。  相似文献   

3.
为考察改性可溶性大豆多糖(MSSPS)对大米淀粉(RS)理化性质的影响,采用动态高压微射流技术,分别在80、120、170MPa的改性压力下,对可溶性大豆多糖(SSPS)进行了改性,得到了MSSPS。向多组RS中分别添加不同质量分数(5.0%,7.5%,10.0%和20.0%)的MSSPS和SSPS,研究其理化性质。结果表明:与SSPS组相比,MSSPS组RS的膨胀力、溶解度和透明度均有所提高;多糖改性压力对RS溶解度和透明度的影响尤为明显,当压力达到120MPa后,溶解度显著提高(P0.05),改性压力为170MPa、质量分数为5.0%的MSSPS组,RS透明度可达6.1%,提高近33%;析水率和凝胶硬度则随着添加量和改性压力的增大而显著下降(P0.05),表明MSSPS能显著提高RS的冻融稳定性,及改善储藏过程中RS的硬化等质构品质。用扫描电镜观察添加MSSPS前、后,4℃下老化7d的RS冻干样品,显示其结构变化为:中空腔壁变薄,空腔变大,类似蜂窝状的结构增多,故从微观结构上证明了MSSPS能降低RS析水率,提高冻融稳定性。研究结果表明:MSSPS对RS理化性质有显著影响,可通过提高冻融稳定性、透明度等,改善淀粉的外观、可接受度和质构品质。  相似文献   

4.
水稻糙米粗蛋白近红外光谱定量分析模型的优化研究   总被引:6,自引:6,他引:6  
筛选有代表性的191份糙米样品为试材,其中42份来自国家稻种资源库、149份来自水旱稻杂交产生的DH系,蛋白质含量变幅5.90%~14.50%,采用偏最小二乘法(PLS)建立模型,并构造模型的评价参数——目标函数[R/(1+RMSECV)], 同时借助校正集和验证集两个载荷向量得分二维空间投影图,对近红外定量模型进行评价和优化。结果表明: 在5 000~9 000 cm-1范围内,预处理方法为一阶导数,校正模型和外部检验的目标函数值分别为0.701和0.687;两载荷向量得分直观分布图显示样品的聚类结果与目标函数筛选结果一致,也进一步验证了目标函数是模型评价和优化的有效指标。  相似文献   

5.
以6%的糯米淀粉溶液为原料,并采用扫描电子显微镜(SEM),紫外-可见(UV/Vis),偏光显微(PLM),X射线衍射(XRD)分析动态超高压微射流处理对糯米淀粉微观结构的影响。结果表明:动态超高压微射流处理后,扫描电镜显示不同压力处理下的糯米淀粉颗粒结构受到不同程度的破坏,经过160 MPa处理后,淀粉颗粒被冲击成片状; 紫外-可见分析中碘兰值变小,支链淀粉含量减小,表明超高压处理过程中支链淀粉的结构被破坏; 偏光显微显示糯米淀粉颗粒的偏光十字随着处理压力的增加逐渐模糊,经160 MPa处理后,多数淀粉颗粒偏光十字消失; X射线衍射分析表明在120 MPa处理后,相对结晶度开始降低,但降低幅度较小。  相似文献   

6.
稀土是一种重要的战略资源,由于稀土资源的稀缺,近年来对其反射波谱特征与高光谱信息提取的研究较为薄弱。笔者首先从稀土电子层构型和能级跃迁的层面阐述了其光谱机理。稀土由于其特殊的电子构型,它们的4f电子的f-f组态之内容易跃迁,在可见光-近红外有其特有的波谱吸收特征。其次结合自己开展的一些工作,系统总结了15种稀土单元素、稀土矿物(含稀土的氟碳酸盐、磷酸盐、硅酸盐矿物)、稀土溶液的反射波谱特征,可见15种稀土单元素的反射特征差异较大,稀土矿物及溶液的波谱特征是化学组成中优势稀土元素的体现,吸收强弱随着稀土浓度的降低逐渐减弱甚至消失。由于稀土信息提取对高光谱传感器要求较为苛刻,目前的研究主要集中于近距离高光谱传感器探测,航空及航天高光谱遥感探测存在一定困难,根据单元素的波谱吸收特征,近距离高光谱传感器目前可成功提取Nd,Er,Dy,Ho,Sm和Tm等的分布信息;最后文章展望了稀土反射波谱及高光谱稀土找矿研究的难点和重点,旨在为今后研究提供新的思路。  相似文献   

7.
传统方法在转基因作物目的基因表达检测上做了很多工作,但仍有发展空间。该研究利用野外高光谱仪(ASD野外光谱仪),避免了实验室测量带来温度水分差异造成的影响,实地测量大田水稻样本光谱数据;通过引入内部聚类系数控制类内波段聚合度,使用均值光谱表征样本类光谱,计算与光合作用高度相关的边峰以及光化学植被指数等参数,快速定量了转基因组样本与亲本在光合作用波段的光谱表达差异。研究结果表明转入基因得到了表达、对样本产生了影响,同时发现面积参数适合描述样本差异,而光化学植被指数对样本差异尤为敏感。这些都证明高光谱遥感技术在水稻转入基因表达检测上具有良好指示作用和应用优势,前景看好。  相似文献   

8.
研究了100MPa高压和酶解处理对热变性大米蛋白溶解性和分子结构特征的影响。结果显示:高压处理后再用Alcalase(碱性蛋白酶)酶解可使大米蛋白的溶解性由单纯酶解时的58.9%提高到75.33%;SE-HPLC(高效液相凝胶色谱法)分析显示,高压处理可使57~105ku的大分子蛋白质溶出,且随着酶解时间延长,该组分消失,4.4和2.0ku组分含量增加,而非高压处理者没有大分子的溶解;FTIR(傅里叶红外光谱)分析显示,高压处理的样品中β-折叠和β-转角结构占主导地位;SEM(扫描电子显微镜)分析表明,高压处理使致密的大米蛋白体结构变得疏松。以上结果表明,高压处理改变了蛋白的空间结构,进而改变蛋白的酶解位点,从而提高了大米蛋白的溶解性。  相似文献   

9.
为了能够快速、无损地检测采后蓝莓腐烂病害,利用高光谱成像技术对采后蓝莓腐烂病进行检测。本研究提出光谱信息分割法(SIS)对866.5 nm波段图像蓝莓病害区域进行分割,取得了较好效果。另外根据正常蓝莓光谱曲线和病害蓝莓光谱曲线,提出区域特征筛选法(RFS),并结合竞争适应重加权采样(CARS)和连续投影(SPA)算法对可见光第一区域波段、近红外第二区域波段分别筛选特征波长。最后,采用相关向量机(RVM)模型和径向基(RBF)神经网络模型对蓝莓腐烂病害进行检测。检测结果表明,第一区域与第二区域特征波长组合建立的CARS-RBF模型检测效果最好,特征波长为655.8,710.9,752.2,759.9,761.2,866.5,969.7 nm,训练集和测试集正常蓝莓与病害蓝莓检测准确率分别为98.3%、98.6%和97.5%、98.75%。本研究提出的光谱信息分割法(SIS)和区域特征筛选法(RFS)检测蓝莓病害,为蓝莓在线检测和分拣提供了一种新的参考方法。  相似文献   

10.
SPAD及FT-NIR光谱法快速筛选白三叶种质蛋白质性状   总被引:3,自引:0,他引:3  
白三叶营养丰富,蛋白质含量高,是最重要的牧草之一.文章对SPAD及FT-NIR光谱法筛选白三叶种质蛋白质性状进行了探讨.采用ChlorophyIl Meter SPAD-502,测定白三叶叶片SPAD值,从而评估其蛋白质含量.在营养生长期内,叶片蛋白质含量与SPAD值呈正相关(y=0.422x+4.984,R2=0.737);在开花期内,两者之间呈负相关(y=-0.345x+37.50,R2=0.711).应用傅里叶变换近红外(FT-NIR)光谱技术,用偏最小二乘法建立了白三叶蛋白质的预测模型,并对模型进行了交叉验证和外部验证.结果表明,用NIRs法得到的预测值与用凯氏定氮法得到的测定值间的交叉验证决定系数Rcv2为0.904,交叉检验标准误差RMSECV为0.988(%DM),外部验证的相关系数为0.987.所建立的近红外模型具有良好的准确性和预测能力.FT-NIR法较SPAD法能更准确的评估白三叶蛋白质状况.NIRS作为一种白三叶粗蛋白质快速分析的技术是可行的,在白三叶蛋白质品质育种中,可快速进行种质资源筛选,提高育种效率.  相似文献   

11.
利用高光谱反射率光谱的特征波段构建光谱指数,建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型,分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据,利用小波分析法对原始光谱反射率曲线进行降噪处理,并对基于积分运算的光谱指数NAOC进行简化,获得了基于双波段简化运算的优化光谱指数。利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数,获得了以积分限(a,b)为横、纵坐标的相关系数二维矩阵,并绘制相关性等势图,得到相关系数最高的3个波段组合:R(641,790)(0.872 6),R(653,767)(0.871 7)和R(644,774)(0.871 6),计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值,按照2∶1的比例划分为建模集和验证集,建立了三种水稻叶片SPAD反演模型:偏最小二乘回归(PLSR)、支持向量机(SVM)和BP神经网络模型。结果显示:利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79,归一化均方根误差NRMSE则小于5.4%。其中BP神经网络相对于其他两种模型具有较高的拟合度,预测精度也相对较高,建模集R2=0.842 6,NRMSE=5.152 7%;验证集R2=0.857,NRMSE=4.829 9%。总体来看,基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的;对比分析3种模型反演结果发现,BP神经网络对水稻叶片SPAD的反演效果较好。该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。  相似文献   

12.
为了建立近红外光谱测定茶叶中茶多酚和茶多糖的模型,应用了人工神经网络方法,选择了7 432.3~6 155.7 cm-1和5 484.6~4 192.5 cm-1特征光谱范围,以网络结构参数的输入层、隐层、输出层神经元数目分别为(8,4,1)和(7,5,1)来建立茶多酚和茶多糖的测定模型,模型的结果表明建模的茶多酚和茶多糖的r,RMSECV,RSECV分别为0.984 7,0.460,0.123和0.947 0,0.136,0.224;预测集的r,RMSEP,RSEP则分别为0.980 4,0.529,0.017和0.968 2,0.111,0.030。由此说明建立的近红外光谱-人工神经网络模型可用于预测茶叶中茶多酚和茶多糖的含量。  相似文献   

13.
稻瘟病是世界公认的水稻重大病害之一.实现稻瘟病害的早期分级检测,对水稻病害早期防治及精准用药具有重要意义.以大田自然发病水稻为研究对象,采集稻瘟病发病早期染病叶片和健康叶片,获取所有叶片样本在400~1000 nm波段内的高光谱图像并提取光谱数据.水稻在染病之初不会立刻出现病斑,无法识别采集到的无斑叶片是否染病.为实现...  相似文献   

14.
蛋白饲料原料粗蛋白含量近红外光谱模型转移研究   总被引:2,自引:0,他引:2  
建立良好的蛋白饲料近红外光谱定量分析模型及实现在不同仪器间的模型共享,能极大提高模型的利用效率,满足饲料行业快速发展的需要。针对蛋白饲料原料粗蛋白含量近红外分析模型适用性问题,首次采用光谱差值转移、直接校正和分段直接校正法进行了三台不同类型的近红外光谱仪之间的模型转移研究。实验样品为四种蛋白饲料原料:玉米蛋白粉、菜粕、酒糟和鱼粉。实验仪器包括MATRIX-Ⅰ傅里叶变换型近红外光谱仪(主仪器),Spectrum 400傅里叶变换型近红外光谱仪(从仪器1)和SupNIR-2750光栅扫描型近红外光谱仪(从仪器2)。研究表明,同一样品体系在主仪器和从仪器2上所得光谱数据的差异性相对较小,且均与从仪器1所得光谱数据的差异性相对较大。除分段直接校正法对玉米蛋白粉从仪器2的预测结果无促进作用之外,其他模型的预测均方根误差和系统偏差均明显低于转移前。玉米蛋白粉、菜粕和酒糟样品采用三种方法转移后的模型预测相对分析误差(RPD)均大于3.0,预测效果良好。鱼粉样品模型转移后的预测RPD均大于2.5,预测效果较好。三种方法对于蛋白饲料原料不同仪器间的光谱差异进行了有效校正。该研究结果对于蛋白饲料品质近红外快速分析模型的广泛应用具有重要意义。  相似文献   

15.
人造植物肉在其原料运输、制糜和包装等加工环节时有发生异物污染事件,误食异物会严重损害人的身体健康.常规食品异物检测方法容易检测出如金属、石头等坚硬、深色异物,而软质、浅色、透明异物却是食品异物污染事件中的主要来源且是检测的难点.根据异物和人造肉各自化学组成成分的差异,提出了一种人造肉中低色度差异物的高光谱成像检测方法,...  相似文献   

16.
张灿林  陈钱 《应用光学》2008,29(2):166-169
根据光谱匹配系数表达式,计算了2种背照明电子倍增CCD(EMCCD)与暗绿色涂层、粗糙混凝土和绿色草木在晴朗星光和满月光条件下的光谱匹配系数并加以比较。其中具有红色增透膜的EMCCD在晴朗星光下与这些景物反射辐射光谱的匹配系数分别为0.4555,0.4298和0.3685,在满月光下为0.7290,0.7194和0.6294;具有蓝色增透膜的EMCCD,匹配系数值相应为0.4233,0.3910,0.3180及0.7832,0.7448,0.5816。  相似文献   

17.
牛奶中包含着很多人体需要的营养元素,如脂肪、蛋白质、钙等;对牛奶营养元素进行分析是牛奶安全检测关键的一部分.高光谱技术可以有效地结合图像和光谱数据识别牛奶种营养元素.为了实现对牛奶中蛋白质含量快速、精确的预测,采用竞争性自适应重加权(CARS)算法选取特征波长,并提出一种基于麻雀搜索算法(SSA)优化支持向量机(SVM...  相似文献   

18.
虉草粗蛋白近红外定量分析模型的建立   总被引:1,自引:0,他引:1  
虉草(Phalaris arundinacea L.)为多年生冷季型禾本科高产牧草,粗蛋白(CP)是评价饲草品质的关键指标,但目前的化学分析方法存在诸多缺点,寻求高效、快速、准确、安全的虉草CP测定方法是现代草地畜牧业发展和草原生态恢复急需解决的实际问题。本研究旨在利用近红外光谱(NIRS)建立虉草CP的定量分析模型,为快速测定虉草CP提供有效方法。试验采集不同品种(品系)、生育期、栽培条件、干燥方式、生长年限、部位以及刈割次数的虉草样品454份,采用瑞士Buchi公司的傅里叶近红外光谱仪和Operator软件采集原始光谱,应用K-S算法剔除具有相似光谱的样品,筛选出210份用于建模和模型评价。通过凯氏定氮法测定210份样品的粗蛋白含量并在Management console软件中对光谱进行赋值,再采用软件NIRcal 5.4按照6∶3的比例将样品随机分为校正集和验证集,并剔除异常样品,运用不同的光谱预处理、回归算法、建模波段和主成分数建立8个虉草CP含量的近红外定量分析模型,通过外部验证表明8个模型均可以进行实际测定。最后比较不同的统计学参数获取最佳模型。结果表明,采用4 000~10 000 cm-1的建模光谱波段、sa3+ncl+db1(3点平滑+趋近归一化+一阶导数处理)的预处理方法、8/1-4的初/次级主成分数和偏最小二乘法(PLS)所建的模型为最佳模型,其校正决定系数(R2cal)为0.982 1,验证决定系数(R2val)为0.980 2,均大于0.98,表明预测性能优秀;校正标准差(SEC)和验证标准差(SEP)分别为0.780 2和0.783 2,均较小且非常接近,表明模型的分析精度很高并具有很好的适应性;残差(BIAS)为-0.000 5,接近于0,说明模型的稳定性很高,对外界因素不敏感;预测相关系数(r)为0.99,可见样品化学值与定标模型预测值的相关度极高;相对分析误差(RPD)为7.37,RPD>4.0表明模型能够很好地进行定量分析。综上,该试验在国内首次建立了虉草CP近红外定量分析模型,该模型样品来源多、数量大、分布范围广,预测精度和准确度高,适用范围大,为快速测定虉草粗蛋白提供了有效方法,在虉草品质分析、育种、家畜日粮配置以及草产品评价流通等方面具有应用前景。  相似文献   

19.
可溶性蛋白和谷胱甘肽(GSH)是羊肉重要的生理生化指标,是衡量机体抗氧化能力大小的重要因素,传统检测方法程序复杂,检测费时。为此应用可见-近红外(400~1 000 nm)高光谱成像技术实现可羊肉可溶性蛋白和还原性谷胱甘肽(GSH)含量无损、快速检测。首先,对采集的180个羊肉样本的原始光谱信息采用4种方法进行预处理,再运用竞争自适应加权算法(CARS)、区间变量迭代空间收缩算法-迭代和保留信息变量法(iVISSA-IRIV)进行特征波段的提取。同时使用灰度共生矩阵法(GLCM)提取贡献率最高的主成分图像的纹理信息。最后将优选出的预处理方法和特征波长信息作为光谱信息和光谱-纹理融合信息分别结合多元线性回归(MLR)、最小二乘支持向量机(LS-SVM)模型建立羊肉可溶性蛋白和谷胱甘肽含量的预测模型。结果显示未经预处理的原始光谱建立的羊肉可溶性蛋白含量PLSR模型效果最佳,其RcRp分别为0.875 7和0.854 7;采用SNV法预处理后光谱建立的羊肉GSH含量PLSR模型效果最佳,其RcRp分别为0.804 8和0.826 5。利用iVISSA-IRIV共筛选出31个特征波长,建立的羊肉可溶性蛋白LS-SVM模型的RcRp最优,分别为0.914 6和0.881 8;同时利用iVISSA-IRIV筛选出29个特征波长,建立的羊肉GSH-MLR模型的RcRp最优,分别为0.844 6和0.870 5。最终经光谱特征信息和图谱信息融合模型对比发现,建立iVISSA-IRIV-LS-SVM模型对羊肉可溶性蛋白预测效果最佳,其RcRp分别为0.914 6和0.881 8;利用SNV-iVISSA-IRIV法提取的光谱特征信息与纹理信息融合建立的MLR模型为预测羊肉GSH含量的最优模型,其RcRp分别为0.849 5和0.890 4。利用最优iVISSA-IRIV-LS-SVM和iVISSA-IRIV-MLR模型和成像处理方法,结合伪色彩图像直观的表示羊肉样本的可溶性蛋白和GSH含量的空间分布情况。研究结果表明利用高光谱图像的光谱和纹理信息能够用来预测羊肉可溶性蛋白和GSH含量。  相似文献   

20.
高光谱图像和叶绿素含量的水稻纹枯病早期检测识别   总被引:1,自引:0,他引:1  
基于高光谱成像技术和化学计量方法,实现了对水稻纹枯病病害的早期检测识别。以幼苗时期的水稻植株为研究对象,对其进行纹枯病病菌侵染,获得染病植株,采集358~1 021 nm波段范围的高光谱图像,三次实验共240个样本,包括染病植株120个样本和健康植株120个样本。根据高光谱图像的光谱维,对染病水稻叶片和健康水稻叶片提取感兴趣区域(ROI),利用感兴趣区域的光谱数据,对其进行Savitzky-Golay(SG)平滑、Savitzky-Golay(SG)一阶求导、Savitzky-Golay(SG)二阶求导、变量标准化(SNV)和多元散射校正(MSC)预处理,建立线性判别分析(LDA)和支持向量机(SVM)分类模型,结果表明:采用SG二阶求导预处理后的线性判别分析(LDA)模型取得了较好的性能,正确识别率在建模集达98.3%,在预测集达95%;利用载荷系数法(x-loading weights, x-LW)对原始光谱和5种预处理的光谱数据进行特征波长提取,然后根据选取的特征波长建立线性判别分析(LDA)和支持向量机(SVM)分类模型,其中采用SG二阶求导预处理后提取的12个特征波长的线性判别分析(LDA)模型取得了较好的性能,其正确识别率在建模集达97.8%,在预测集达95%,而且基于载荷系数法建立的模型性能与全波段相当,可以通过载荷系数法减少数据量对水稻纹枯病病害进行识别;根据高光谱图像的图像维,研究了基于图像主成分分析、基于概率滤波和基于二阶概率滤波的图像特征提取方法,利用提取的特征变量建立反向传播神经网络(BPNN)和支持向量机(SVM)分类模型,其中基于图像主成分分析的反向传播神经网络(BPNN)模型取得了较好的性能,建模集准确识别率达90.6%,预测集的准确识别率达83.3%;根据高光谱图像光谱维和图像维的最优模型,特将叶绿素含量作为建模的另一个特征,分别与光谱特征、图像特征组合,建立反向传播神经网络(BPNN)和线性判别分析(LDA)模型,提出基于光谱特征加叶绿素含量、图像特征加叶绿素含量和光谱、图像特征加叶绿素含量三种组合方式,其中,光谱特征和图像特征分别与叶绿素组合的方式比之前单独的光谱和图像特征建模性能都有所提升,而且三种组合方式中光谱特征加叶绿素含量的反向传播神经网络(BPNN)建模方式取得本研究所有建模方式中较优的性能,其准确识别率在建模集达100%,在预测集达96.7%。以上研究表明,基于高光谱图像和叶绿素含量对水稻纹枯病病害进行早期识别是可行的,为水稻病害的早期识别提供了一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号