首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ag nanoparticles (Ag NPs) embedded titanium dioxide (TiO2) nanofibers were fabricated by colloidal sol process, electrospinning, and calcination technique. Calcination of the electrospun nanofibers were heat treated at 600°C for 180 minutes in air atmosphere. X-ray diffraction patterns exhibited that the anatase phase and silver coexisted in the resulted Ag NPs/TiO2 nanofibers; transmission electron microscopy demonstrated Ag NPs well spread in the porous microstructure of composite fibers. The prepared nanofibers were utilized as photocatalyst for degradation of methyl orange. The degradation rate of methyl orange dye solution containing Ag/TiO2 composite nanofibers is 99% only after irradiation for 3 hours. It is proposed that these new Ag NPs/TiO2 composite nanofibers will have potential application in water pollution treatment.   相似文献   

2.
Nitrogen-doped TiO2 (N-TiO2) were prepared by the impregnation method using urea as a nitrogen source and TiO2-P25 as precursor. N-TiO2 was characterized by x-ray diffraction (XRD), UV–vis diffusion reflectance spectra (UV–vis DRS), Fourier transform infrared spectroscopy (FTIR), and x-ray photoelectron spectroscopy (XPS) techniques. XPS analysis indicates the incorporation of nitrogen in TiO2 lattice as O–Ti–N linkage. DRS spectra reveal the extended absorption to the visible range. Photocatalytic performance of the N-TiO2 was studied by testing the degradation rate of aqueous styrene under visible light. Also, the degradation kinetics of aqueous styrene and possibility of cyclic usage of N-TiO2 were investigated.  相似文献   

3.
It was found that the interface tension between water and alkenyl succinic anhydride (ASA) was significantly reduced by polyaluminum sulfate (PAS), increased considerably though by TiO2 nanoparticle. PAS with basicity of 0.75 (PAS-0.75) reduced the interface tension to a larger extent than PAS with basicity of 0.3 (PAS-0.3). By reducing interface tension with PAS-0.75, ASA-in-water emulsion bearing fusiform geometries was constructed. The emulsion stabilized by PAS-0.3 and TiO2 nanoparticle bore spherical shapes with the exception when mass fraction of TiO2 nanoparticle was low, in which case fused nonspherical drops were formed. Forming nonspherical emulsion crucially depends on ASA-water interface tension, where a critical interface tension was identified to be 0.6–0.7 mN/m. The fusiform geometries were transformed into spherical shapes when interface tension was higher than 0.7 mN/m. Both the lowering mechanism of the interface tension and the formation mechanism of the fusiform emulsion were proposed.   相似文献   

4.
In this study, the response surface methodology was first applied to optimize the photocatalytic degradation of styrene in aqueous phase under UV/TiO2 system. Twenty experiments were done by adjusting three parameters (styrene concentration, TiO2 dose, and pH) at five levels. Optimal experimental conditions for arbitrary aqueous styrene concentration (115 mg L?1) were found: initial pH 7 and TiO2 loading 2 g L?1 with photocatalytic degradation efficiency of 79.2%. Furthermore, the main degradation intermediate produced was identified by GC/MS. The total organic carbon results revealed that the photocatalysis process could be effectively mineralized. Kinetics of the photocatalytic reaction followed a pseudo-first-order model.  相似文献   

5.
6.
Although the compression ignition engines are a significant source of power, their detrimental emissions create considerable problems to the environment as well as to humans. The objective of the present experimental investigation is to examine the effects of the magnetic nanofluid fuels on combustion performance characteristics and exhaust emissions. In this regard, the Fe3O4 nanoparticles dispersed in the diesel fuel with the nanoparticle concentrations of 0.4 and 0.8 vol% were employed for combustion in a single-cylinder, direct-injection diesel engine. After a series of experiments, it was demonstrated that the nanoparticle additives, even at very low concentrations, have considerable influence in diesel engine characteristics. Furthermore, the results indicated that the nanofluid fuel with nanoparticle concentration of 0.4 vol% shows better combustion characteristics in comparison with that of 0.8 vol%. Based on the experimental results, NO x and SO2 emissions dramatically reduce, while CO emissions and smoke opacity noticeably increase with increasing the dosing level of nanoparticles.  相似文献   

7.
The structure of nanoparticles and the spatial arrangement of photogenerated thermalized charge carriers are studied for a series of isomers of small anatase nanoparticles (TiO2)29(H2O)4, (TiO2)70(H2O)4, and (TiO2)70 with faces (001) and (101) on the surface. It is shown that the location of surface hydroxyl groups and their replacement by surface oxygen atoms affect the nature and degree of deformation of the nanoparticle structure. The location of the boundary orbitals depends both on the size of the nanoparticles and on the location of the hydroxyl groups, as well as on the degree of dehydroxylation, which leads to the replacement of the hydroxyl groups by the surface oxygen atoms. In the case of a certain arrangement of hydroxyl groups or surface oxygen atoms, uncharged small stoichiometric anatase nanoparticles begin to absorb light in the visible region of the spectrum (the band gap width Eg decreasing to 2.25 eV). This is associated with the energy levels at the edge of the band gap near the valence band and the conduction band.  相似文献   

8.
MWCNT/TiO2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO2 was 20%, MWCNT/TiO2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO2 nanostructures at 400 °C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue.  相似文献   

9.
The present study is focused on the characterization of optical properties of poly (methyl methacrylate) (PMMA) films and the possibilities of modulation and fine tuning of their refractive index by the inclusion of different concentrations of nano-sized titanium dioxide (TiO2) particles (less than 33 nm) and corona poling. The samples are prepared by the “spin coating” method and they are charged in a conventional point-to-plain corona system. The transparent PMMA/TiO2 films exhibit good optical properties in the visible range. An investigation of the film’s surface refractive index by two wavelengths laser refractometry utilizing the disappearing diffraction pattern method is carried out. The refractive index increases with increasing the TiO2 content in the nanocomposite films. The corona poling increases the refractive index values for all samples regardless of the polarity and concentration of TiO2 nanoparticles. The results show that the prepared nanocomposite films have a potential application for optical devices.  相似文献   

10.
TiO2 nanoparticles were modified with porphyrin derivatives, 5-[4-benzoic acid]-10,15,20-tris[3,5-di-tert-butylphenyl]-21H,23H-porphyrin (Ar-H2P-COOH), 5-[4-benzoic acid]-10,20-tris[3,5-di-tert-butylphenyl]-21H,23H-porphyrin (H-H2P-COOH), and 5,10,15,20-tetra[4-benzoic acid]-21H,23H-porphyrin (H2P-4COOH). The porphyrin-modified TiO2 nanoparticles were deposited on nanostructured OTE/SnO2 electrode together with nanoclusters of fullerene (C60) in acetonitrile-toluene (3/1, v/v) using an electrophoretic deposition technique to afford the porphyrin-modified TiO2 composite electrode denoted as OTE/SnO2/(porphyrin-modified TiO2 nanoparticle+C60)n. The porphyrin-modified TiO2 composite electrodes have efficient light absorbing properties in the visible region, exhibiting the photoactive response under visible light excitation using redox couple. The incident photon-to-photocurrent efficiency (IPCE) values of supramolecular nanostructured electrodes of porphyrin-modified TiO2 nanoparticles with fullerene [OTE/SnO2/(Ar-H2P-COO-TiO2+C60)n, OTE/SnO2/(H-H2P-COO-TiO2+C60)n, and OTE/SnO2/(H2P-4COO-TiO2+C60)n] are much larger than those of the reference systems of porphyrin-modified TiO2 nanoparticles without C60 [OTE/SnO2/(Ar-H2P-COO-TiO2)n, OTE/SnO2/(H-H2P-COO-TiO2)n, and OTE/SnO2/(H2P-4COO-TiO2)n]. In particular, the maximum IPCE value (41%) is obtained for OTE/SnO2/(H-H2P-COO-TiO2+C60)n under the bias potential of 0.2 V versus SCE. This indicates that the formation of supramolecular complexes between porphyrins and fullerene on TiO2 nanoparticles plays an important role in improvement of the light energy conversion properties.  相似文献   

11.
In this study, we present kinetics of phenol dyes removal by SnO2/Fe3O4 nanoparticles in a photocatalytic reactor for optimization of this process. The effect of different concentrations of SnO2 5, 10, 15, 20% w/w on the photocatalytic reactor during removal of phenol red was investigated. The SnO2/Fe3O4 nanoparticles were synthesized by core–shell method. The results of XRD and TEM showed the successful synthesis of these nanoparticles. Several other methods were applied to synthesis of these nanoparticles but none of them succeeded. This process composed of two-stage. The first stage was absorption by iron oxide nanoparticles and second stage was photocatalytic by tin oxide nanoparticles that followed pseudo-second-order kinetic and first-order kinetic, respectively. Optimization of this process was done corresponding to the parameters affecting the process with design expert software. In order to determine the optimal values of each of the parameters and the optimal conditions of the process, parameters were introduced to response surface methodology.  相似文献   

12.
Nano-composite of Fe-doped anatase TiO2 nanocrystals loaded on the hollow glass microbeads was prepared by co-thermal hydrolysis deposition and calcining treatment. The adherence of TiO2 mesoporous layers to the surfaces of hollow glass microbeads prevented the aggregation of TiO2 nanoparticles and benefited to their catalytic activity. The doping of Fe ions makes the absorption edge of the TiO2 based nano-composite red-shifted into the visible region. An effective photodegradation of the methyl orange aqueous solution was achieved under visible light (λ>420 nm) irradiation, revealing the potential applicability of such nano-composite in some industry fields, such as air and water purifications.  相似文献   

13.
An experimental study is performed to determine the pressure drop and performance characteristics of Al2O3/water and CuO/water nanofluids in a triangular duct under constant heat flux where the flow is laminar. The effects of adding nanoparticles to the base fluid on the pressure drop and friction factor are investigated at different Reynolds numbers. The results show that at a specified Reynolds number, using the nanofluids can lead to an increase in the pressure drop by 35%. It is also found that with increases in the Reynolds number, the rate of increase in the friction factor with the volume fraction of nanoparticles is reduced. Finally, the performance characteristics of the two nanofluids are investigated using the data of pressure drop and convective heat transfer coefficient. The results show that the use of Al2O3/water nanofluid with volume fractions of 1.5% and 2% is not helpful in the triangular duct. It is also concluded that at the same volume fraction of nanoparticles, using Al2O3 nanoparticles is more beneficial than CuO nanoparticles based on the performance index.  相似文献   

14.
A method for synthesizing a CdS/TiO2 composite material, active in the visible region, was described. The CdS/TiO2 composite was obtained by the sol–gel synthesis of nanostructured TiO2 in a medium of a stable colloidal solution of CdS nanoparticles. The TiO2 matrix produced by the sol–gel process is amorphous and contains a nanocrystalline anatase phase, the content of which depends on the Ti(OBu)4 hydrolysis rate. The content of CdS nanoparticles forming in the colloidal solution and participating in the TiO2 matrix sensitization is determined by the initial CdS: Ti(OBu)4 ratio. Although the content of CdS nanoparticles in the composite is low (no more than 3 wt %), the composite demonstrates catalytic activity in the visible region, thus proving the possibility of reducing the content of toxic CdS nanoparticles in the TiO2 matrix without decreasing the photosensitivity of the CdS/TiO2 composite.  相似文献   

15.
16.
17.
18.
Metastable Bi20TiO32 samples were synthesized by a high-temperature quenching method using α-Bi2O3 and anatase TiO2 as raw materials. The photocatalytic activity of the as-prepared samples was measured with the photodegradation of methyl orange at room temperature under visible light irradiation. The Bi20TiO32 samples exhibited good absorption in the visible light region with a band gap of about 2.38 eV and the band structure of Bi20TiO32 was studied. Photodegradation against methyl orange was much better than α-Bi2O3 prepared by the same way. The photocatalytic activity of Bi20TiO32 samples is supposed to be associated with the hybridized Bi 6s and O 2p orbitals. In addition, the dispersive characteristic of Bi 6s orbital in the hybridized valence band facilitates the mobility of the photogenerated carriers and hampers their recombination.  相似文献   

19.
Homogeneous TiO2 gel powders were prepared by hydrolysis and condensation of titanium(IV) isopropoxide with HCl or SnCl2 catalysts, by working under reduced pressure or in air. Ti(IV) alkoxide was previously modified by reaction with formic or acetic acid, used as chelating ligands, when gelation was performed in acidic catalysis. Crude TiO2 xerogels were purified by water reflux treatment in order to induce a low temperature crystallisation to the anatase phase. Both crude and purified TiO2 samples were characterised by XRD, FT-IR, SEM, and N2 adsorption analysis. Thermoanalyses (TG, DTA, DTG, TG-MS, TG-GC-MS) were carried out to quantify the residual organic components in the crude TiO2 gels and to obtain stoichiometric formulas to describe their chemical compositions. XRD data of purified TiO2 powders were processed by means of a Rietveld refinement procedure to determine TiO2 polymorphs, crystallite sizes and cell parameters, before their use in photocatalytic tests. The photoactivity of the purified TiO2 anatase powders was studied by using 4-nitrophenol degradation as probe reaction carried out in a batch and/or a membrane photoreactor. Samples prepared by using formic acid or SnCl2 were the most photoactive, whereas specimens gelled under vacuum treatment showed detrimental effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号