首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The block copolymerization of tert‐butyl methacrylate (tBMA) with a difunctionalized polystyrene (PS) macroinitiator was investigated. The polymerizations were performed under UV light irradiation using PS bearing α‐ and ω‐functionalized end groups containing diethyldithiocarbamyl groups as a macroiniferter. Kinetic studies indicate the molecular weights of triblock copolymers increased linearly with the conversion. Block copolymers with different lengths of PtBMA segments were easily prepared by varying the ratio of tBMA and PS macroiniferter or by controlling the monomer conversion. The formations of block copolymers were characterized by gel permeation chromatographic, 1H NMR, and DSC analyses. PtBMA segments of the triblock copolymer were subsequently hydrolyzed quantitatively to poly(methacrylic acid) segments using concentrated HCl as a catalyst in a refluxing solution of dioxane, and then an amphiphilic ABA triblock copolymer was produced. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1450–1455, 2001  相似文献   

2.
Block copolymer comprising of polyisobutylene (PIB) soft segment and poly(3‐(3,5,7,9,11,13,15‐heptaisobutyl‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxane‐1‐yl)propyl methacrylate) (PMAPOSS) hard segment was synthesized by combination of living carbocationic and reversible addition‐fragmentation chain transfer (RAFT) polymerizations. Block copolymers were characterized by 1H and 29Si NMR spectroscopy, FT‐IR study, energy dispersive X‐ray spectroscopy (EDX), and gel permeation chromatography (GPC). The EDX, combined with scanning electron microscopy (SEM) was employed for determination of elemental composition. Thermal transition and degradation behaviors were confirmed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), respectively. Although both the PIB and MAPOSS homopolymers are amorphous in nature, in their block copolymers the PMAPOSS domain showed crystalline behavior, as confirmed from wide‐angle X‐ray scattering (WAXS) technique, DSC studies and polarized optical microscopy (POM). Interestingly, crystalline melting temperatures (Tm) can be tuned by changing the PIB to PMAPOSS block length ratios. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1125–1133  相似文献   

3.
Poly(l-lactide)/poly(?-caprolactone) diblock, triblock and four-armed copolymers with the same monomer feed ratio (50/50) were synthesised by two step ring opening polymerisation of successively added ?-caprolactone and l-lactide, using isopropanol, ethylene glycol, or pentaerythritol as initiator and zinc lactate as co-initiator. The resulting copolymers were characterised by 1H NMR, DSC, SEC, and FT-IR, which confirmed the blocky characteristic of the copolymers. Solution cast films were allowed to degrade at 37 °C in the presence of proteinase K, and the degradation was monitored by gravimetry, DSC, SEC, 1H NMR and ESEM. The effects of chain structure, block length and crystallinity on the degradation are discussed. The four-armed block copolymer degrades the most rapidly, while the diblock copolymer exhibited the slowest degradation rate. The difference was related to the crystallinity depending on both the molecular structure and block length. Little compositional or molar mass changes were obtained during degradation, which strongly supports a surface erosion mechanism, in agreement with ESEM observations.  相似文献   

4.
Abstract

Block copolymers composed of a polyether, such as poly(oxytetra-methylene), and vinyl polymers, such as polystyrene, poly(methyl methacrylate), poly(butyl acrylate), and poly(vinyl acetate), were prepared by photopolymerizations of vinyl monomers initiated with a polyether macroiniferter, α - (diethyldithiocarbamylacetyl) - ω - (diethyldithiocar-bamylacetoxy)-poly(oxytetramethylene). ESR spectroscopy and end-group analysis of diethyldithiocarbamyl indicated that block copolymers should be predominantly ABA-type copolymers. The block copolymers were characterized in detail by NMR, GPC, and DSC analysis.  相似文献   

5.
倪沛红 《高分子科学》2013,31(2):218-231
 Two pH-responsive amphiphilic diblock copolymers, namely polyisobutylene-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PIB-b-PDMAEMA) and polyisobutylene-block-poly(metharylic acid) (PIB-b-PMAA), were synthesized via oxyanion-initiated polymerization, and their multiple self-assembly behaviors have been studied. An exo-olefin-terminated highly reactive polyisobutylene (HRPIB) was first changed to hydroxyl-terminated PIB (PIB-OH) via hydroboration-oxidation of C=C double bond in the chain end, and then reacted with KH to yield a potassium alcoholate of PIB (PIB-O-K+). PIB-O-K+ was immediately used as a macroinitiator to polymerize DMAEMA monomer, resulting in a cationic diblock copolymer PIB-b-PDMAEMA. With the similar synthesis procedure, the anionic diblock copolymer PIB-b-PMAA could be prepared via a combination of oxyanion-initiated polymerization of tert-butyl methacrylate (tBMA) and subsequent hydrolysis of tert-butyl ester groups in PtBMA block. The functional PIB and block copolymers have been fully characterized by 1H-NMR, FT-IR spectroscopy, and gel permeation chromatography (GPC). These samples allowed us to systematically investigate the effects of block composition on the pH responsivity and various self-assembled morphologies of the copolymers in THF/water mixed solvent. Transmission electron microscopy (TEM) images revealed that these diblock copolymers containing small amount of original PIB without exo-olefin-terminated group are able to self-assemble into micelles, vesicles with different particle sizes and cylindrical aggregates, depending on various factors including block copolymer composition, solvent polarity and pH value.  相似文献   

6.
Different diblock copolymers constituted by one segment of a monomer supporting a reactive functional group, like allyl methacrylate (AMA), were synthesized by atom transfer radical polymerization (ATRP). Bromo‐terminated polymers, like polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(butyl acrylate) (PBA) were employed as macroinitiators to form the other blocks. Copolymerizations were carried out using copper chloride with N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as the catalyst system in benzonitrile solution at 70 °C. At the early stage, the ATRP copolymerizations yielded well‐defined linear block copolymers. However, with the polymerization progress a change in the macromolecular architecture takes place due to the secondary reactions caused by the allylic groups, passing to a branched and/or star‐shaped structure until finally yielding gel at monomer conversion around 40% or higher. The block copolymers were characterized by means of size exclusion chromatography (SEC), 1H NMR spectroscopy, and differential scanning calorimetry (DSC). In addition, one of these copolymers, specifically P(BA‐b‐AMA), was satisfactorily modified through osmylation reaction to obtain the subsequent amphiphilic diblock copolymer of P(BA‐b‐DHPMA), where DHPMA is 2,3‐dihydroxypropyl methacrylate; demonstrating the feasibility of side‐chain modification of the functional obtained copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3538–3549, 2007  相似文献   

7.
Poly(?-caprolactone)-b-poly(ethylene glycol)-b-poly(?-caprolactone) (PCL-b-PEG-b-PCL) triblock copolymer were synthesized by mean anionic activation of the hydroxyl end groups of poly(ethylene glycol) in presence of diphenylmethylsodium. Copolymers were characterized by SEC, FT-IR and 1H-NMR spectroscopy, TGA and DSC. Size exclusion chromatographic analysis of obtained copolymers indicated incorporation of CL monomer into PEG without formation of PCL homopolymer. Characterization by FT-IR and 1H NMR spectroscopy of the resulting polymeric products, with respect to their structure, end-groups and composition, showed that they are best described as ester-ether-ester triblock copolymers, whose compositions can be adjusted changing the feeding molar ratio of PEG to CL. The thermal stability of triblock copolymers was less that PEG precursor, but higher that PCL homopolymer. Analysis by mean DSC showed that all copolymers were semi-crystalline and their thermal behavior depending on their composition.  相似文献   

8.
Five copolymer samples containing different mole fractions of methyl methacrylate (MMA) and 2-ethylhexyl methacrylate (EHMA) were prepared by bulk polymerisation at 70°C using 0.2% benzoyl peroxide as an initiator. The copolymer composition was determined by1H NMR spectroscopy. Molecular weight of copolymers was determined by gel permeation chromatography and viscosity measurements. Thermogravimetric experiments were conducted to evaluate activation energy for the degradation of copolymers. Two to four reaction stages for the weight loss were observed in the copolymers. A decrease in thermal stability was observed by an increase in EHMA content.  相似文献   

9.
We report on a new doubly responsive polymeric system of amphiphilic diblock copolymers, namely poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate), PDEGMA-b-PDIPAEMA, obtained by the reversible addition-fragmentation chain transfer (RAFT) polymerization technique. Molecular characterization by size exclusion chromatography (SEC), nuclearmagnetic resonance (1H-NMR) and infrared spectroscopy (FT-IR) confirms the successful synthesis of these novel block copolymers. The PDEGMA-b-PDIPAEMA block copolymers formed aggregates in aqueous media in response to solution pH and temperature changes, as evidenced by dynamic and static light scattering techniques, as well as fluorescence spectroscopy. Aggregates with PDEGMA core and PDIPAEMA corona domains are formed at elevated temperatures and low pH, whereas aggregates with PDIPAEMA cores and PDEGMA coronas are formed at neutral and high pH. Overall structural characteristics and solution behavior of the copolymers are affected by the copolymer composition. The obtained results provide valuable new information on the behavior and design guidelines for the construction of stimuli responsive, “schizophrenic” polymeric nanostructures with potential application in the biomedical field.  相似文献   

10.
A self-assembled diblock copolymer containing styrene (S), methyl methacrylate and a certain percentage of hydrophilic segment of poly(methacrylic acid) (i.e., poly(styrene)-block-poly(methyl methacrylate/methacrylic acid) was synthesized via the ATRP method in two steps. This was followed by a partial hydrolysis of the methyl ester linkages of the methyl methacrylate block under acidic conditions. The resultant block copolymer had a narrow molecular weight dispersity (Р< 1.3) and was characterized using FT-IR and Raman spectroscopy as well as size exclusion chromatography. The block copolymer was used as a nanoreactor for inorganic nanoparticles (ZnO). The incorporation of a single source precursor, such as ZnCl2, into the self-assembled copolymer matrix and the conversion into ZnO nanostructures was carried out in the liquid phase using wet chemical processing techniques. We report the synthesis and characterization of nanocomposites with dual characteristics due to the functionalities incorporated into the matrix. The optical properties were determined by UV–Vis and fluorescence, the crystallinity was studied using X-ray diffraction, and the thermal stability and studies of the cyclic voltammetry were obtained by thermogravimetric analyzes and potentiodynamic electrochemical measurements, respectively. The structural, topographical and morphological characterizations of the ZnO composite in relation to the precursor block copolymer were analyzed via scanning electron microscopy, transmission electron microscopy and atomic force microscopy.  相似文献   

11.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

12.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

13.
以甲基丙烯酸(MAA)、甲基丙烯酸甲酯(MMA)、N-苯基马来酰亚胺(N-PMI)、甲基丙烯酸环己基酯(CHMA)为反应单体,通过自由基共聚合成了一系列共聚物PMMNC,然后与甲基丙烯酸缩水甘油酯(GMA)反应制备了甲基丙烯酸酯共聚物G-PMMNC.利用傅立叶红外光谱(FT-IR)、核磁共振氢谱(1HNMR)、凝胶渗透色谱(GPC)、差示扫描量热(DSC)等表征了共聚物的结构与性能.随着N-PMI含量的升高,共聚物的分子量增大,玻璃化转变温度升高;以G-PMMNC为基体树脂制备了光致抗蚀剂,考察了光致抗蚀剂的耐酸性和分辨率,研究结果表明,该光致抗蚀剂的耐酸性良好,分辨率为40 μm.  相似文献   

14.
An emulsifier-free fluorinated polyarcylate emulsion was synthesized by a seed emulsion polymerization method from methyl methacrylate (MMA), butyl acrylate (BA) and hexafluorobutyl methacrylate (HFMA) in the presence of a polymerizable emulsifier—ammonium allyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86). Influences of the DNS-86 level on electrolyte stability of the emulsifier-free emulsion were discussed. In addition, the emulsion and the films were characterized by Fourier transformed infrared (FT-IR) spectrometry, nuclear magnetic resonance (1H NMR) spectrometry, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), thermogravimetry (TG), and contact angle (CA) analysis, respectively. The FT-IR spectra and 1H NMR spectrum showed that HFMA was effectively involved in the emulsion copolymerization and monomers formed the fluorine-containing acrylate copolymer. The resulted emulsion particles had a core–shell structure and a narrow particle size distribution. XPS and CA analysis revealed that a gradient concentration of fluorine existed along the depth profile of the fluorine-containing emulsion film. One side of the film was richer in fluorine and more hydrophobic than the other side. The film formed from the fluorine-containing emulsion showed higher thermal stability than that of the fluorine-free emulsion.  相似文献   

15.
The rapid atom transfer radical polymerization (ATRP) of benzyl methacrylate (BnMA) at ambient temperature was used to synthesize block copolymers with styrene as the second monomer. Various block copolymers such as AB diblock, BAB symmetric and asymmetric triblock, and ABABA pentablock copolymers were synthesized in which the polymerization of one of the blocks namely BnMA was performed at ambient temperature. It is demonstrated that the block copolymerization can be performed in a controlled manner, regardless of the sequence of monomer addition via halogen exchange technique. Using this reaction condition, the composition (ratio) of one block (here BnMA) can be varied from 1 to 100. It is further demonstrated that in the multiblock copolymer syntheses involving styrene and benzyl methacrylate, it is better to start from the PS macroinitiator compared with PBnMA macroinitiator. The polymers synthesized are relatively narrow dispersed (<1.5). It is identified that the ATRP of BnMA is limited to certain molecular weights of the PS macroinitiator. Additionally, a preliminary report about the synthesis of the block copolymer of BnMA‐methyl methacrylate (MMA), both at ambient temperature, is demonstrated. Subsequent deprotection of the benzyl group using Pd/C? H2 results in methacrylic acid (MAA)–methyl methacrylate (MAA–MMA) amphiphilic block copolymer. GPC, IR, and NMR are used to characterize the synthesized polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2848–2861, 2006  相似文献   

16.
ABC triblock copolymers of methyl methacrylate (MMA), (dimethylamino)-ethyl methacrylate (DMAEMA), and tetrahydropyranyl methacrylate (THPMA) consisting of 12 units of each type of monomer were synthesized by group transfer polymerization (GTP). These were the three topological isomers with differentblock sequences: DMAEMA12-THPMA12-MMA12, DMAEMA12-MMA12-THPMA12, and THPMA12-DMAEMA12-MMA12. The molecular weights and molecular weight distributions of the copolymers were determined by gel permeation chromatography (GPC) in tetrahydrofuran, and their number-average degrees of polymerization and copolymer compositions were calculated by proton nuclear magnetic resonance spectroscopy (1H-NMR). These molecular weights and degrees of polymerization corresponded closely to the values expected from the monomer/initiator ratios. The polydispersities were low as expected for GTP, and ranged from 1.09 to 1.25. The three triblocks were chemically modified by converting the THPMA units to methacrylic acid (MAA) units either by thermolysis or acid hydrolysis. The resulting ABC triblock poly-ampholytes were characterized by 1H-NMR spectroscopy and hydrogen ion titration. Aqueous GPC studies in 1.0M NaCl at pH 8.5 showed that the triblock copolymers form micelles whose size depends on their block sequence. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 617–631, 1998  相似文献   

17.

A series of polyacrylate‐polystyrene‐polyisobutylene‐polystyrene‐polyacrylate (X‐PS‐PIB‐PS‐X) pentablock terpolymers (X=poly(methyl acrylate) (PMA), poly(butyl acrylate) (PBA), or poly(methyl methacrylate) (PMMA)) was prepared from poly (styrene‐b‐isobutylene‐b‐styrene) (PS‐PIB‐PS) block copolymers (BCPs) using either a Cu(I)Cl/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) or Cu(I)Cl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) catalyst system. The PS‐PIB‐PS BCPs were prepared by quasiliving carbocationic polymerization of isobutylene using a difunctional initiator, followed by the sequential addition of styrene, and were used as macroinitiators for the atom transfer radical polymerization (ATRP) of methyl acrylate (MA), n‐butyl acrylate (BA), or methyl methacrylate (MMA). The ATRP of MA and BA proceeded in a controlled fashion using either a Cu(I)Cl/PMDETA or Cu(I)Cl/Me6TREN catalyst system, as evidenced by a linear increase in molecular weight with conversion and low PDIs. The polymerization of MMA was less controlled. 1H‐NMR spectroscopy was used to elucidate pentablock copolymer structure and composition. The thermal stabilities of the pentablock copolymers were slightly less than the PS‐PIB‐PS macroinitiators due to the presence of polyacrylate or polymethacrylate outer block segments. DSC analysis of the pentablock copolymers showed a plurality of glass transition temperatures, indicating a phase separated material.  相似文献   

18.
Abstract

Synthesis and gas permeability of random and block copolymers of a cyclotetrasiloxane-containing methacrylate have been studied in comparison with those of tris(trimethylsiloxy)silane-containing methacrylate (MTTS) copolymers. Random and block copolymers of 3-(heptamethyl cyclotetrasiloxanyl) propyl methacrylate (HCPM) and methyl methacrylate (MMA) were prepared by radical copolymerization using 2,2′-azobisisobutyronitrile and a poly(azoinitiator), poly(1,6-hexamethylene 4,4′-azobiscyanopentanoate), respectively. Differential scanning calorimetry (DSC) revealed that HCPM-MMA block copolymers exhibited heterogeneous phases, as evidenced by two distinct glass transition temperatures due to poly-HCPM (PHCPM) block and PMMA block, while the single glass transition temperatures in the homogeneous phases in HCPM-MMA random copolymers lowered with HCPM content. The oxygen and nitrogen gas permeability coefficients of HCPM-MMA random copolymer films measured at 23°C were found to steeply increase with HCPM contents, although those of HCPM-MMA block copolymers slightly increased. The permeability coefficients of MTTS-MMA random copolymers prevailed over those of HCPM-MMA random copolymers despite the same four Si atoms, probably because of its free volume effect. Further, the HCPM content dependency on the diffusion and solubility coefficients, and the effect of crosslinking on their gas permeability were also discussed.  相似文献   

19.
The cellulose acetate-grafted-poly(glycidyl methacrylate) copolymers were synthesized successfully by free radical polymerization. The resulting copolymer was characterized by proton nuclear magnetic resonance (1H-NMR), solid-state 13C-NMR, Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The crystallization behavior, thermal properties, specific particle surface area, moisture sorption behavior of the modified cellulose acetate were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) method and Dynamic Vapor Sorption (DVS) instrument. It was found that the poly(glycidyl methacrylate) (PGMA) grafting was effective in improving the water adsorption of cellulose acetate (CA) changing the specific surface area, and reducing the Tg of copolymers.  相似文献   

20.
The novel methacrylic monomer, 4-nitro-3-methylphenyl methacrylate (NMPM) was synthesized by reacting 4-nitro-3-methylphenol dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine as a catalyst. The homopolymer and copolymers of NMPM with glycidyl methacrylate having different compositions were synthesized by free radical polymerization in EMK solution at 70 ± 1 °C using benzoyl peroxide as free radical initiator. The homopolymer and the copolymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility tests were tested in various polar and non-polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in NMPM content. The thermogravimetric analysis of the polymers performed in air showed that the thermal stability of the copolymer increases with NMPM content. The copolymer composition was determined using 1H NMR spectra. The monomer reactivity ratios were determined by the application of conventional linearization methods such Fineman-Ross (r1 = 1.862, r2 = 0.881), Kelen-Tudos (r1 = 1.712, r2 = 0.893) and extended Kelen-Tudos methods (r1 = 1.889, r2 = 0.884).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号