首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ self-ion irradiations (150?keV?W+) have been carried out on W and W–5Re at 500?°C, with doses ranging from 1016 to 1018 W+m?2 (~1.0?dpa). Early damage formation (1016W+m?2) was observed in both materials. Black–white contrast experiments and image simulations using the TEMACI software suggested that vacancy loops were formed within individual cascades, and thus, the loop nucleation mechanism is likely to be ‘cascade collapse’. Dynamic observations showed the nucleation and growth of interstitial loops at higher doses, and that elastic loop interactions may involve changes in loop Burgers vector. Elastic interactions may also promote loop reactions such as absorption or coalescence or loop string formation. Loops in both W and W–5Re remained stable after annealing at 500?°C. One-dimensional hopping of loops (b?=?1/2 ?111>) was only seen in W. At the final dose (1018W+m?2), a slightly denser damage microstructure was seen in W–5Re. Both materials had about 3–4?×?1015 loops m?2. Detailed post-irradiation analyses were carried out for loops of size???4?nm. Both b?=?1/2 ?111? (~75%) and b?= ?100> (~25%) loops were present. Inside–outside contrast experiments were performed under safe orientations to determine the nature of loops. The interstitial-to-vacancy loop ratio turned out close to unity for 1/2 ?111? loops in W, and for both 1/2 ?111? and ?100? loops in W–5Re. However, interstitial loops were dominant for ?100? loops in W. Re seemed to restrict loop mobility, leading to a smaller average loop size and a higher number density in the W-Re alloy.  相似文献   

2.
A series of hydroxyapatite/alginate (HA/Alg) nanocomposites with alginate amounts varying from 10 to 40 wt% were prepared through in situ hybridization technique. The inorganic phase in the composites was carbonate-substituted HA with low crystallinity. The crystallinity of HA decreased with the increase of alginate content. HA crystallites were needle-like in shape with a typical size of 20 to 50 nm in length and 5 nm in width. FT-IR spectroscopy indicated that the chemical interaction occurred between the mineral phase and the polymer matrix. As compared to pure HA without alginate, the composites showed more homogeneous microstructures, where HA nanocrystals were well embedded in alginate matrix. Among all the samples, the composite containing 30 wt% alginate exhibited a highly ordered three-dimensional network, similar to natural bone’s microstructure.  相似文献   

3.
The deformation behaviour of an α + β Ti–6Al–4V (wt.%) alloy was investigated during in situ deformation inside a scanning electron microscopy (SEM). Tensile experiments were performed at 296 and 728 K (~0.4Tm), while a tensile-creep experiment was performed at 728 K and 310 MPa (σ/σys = 0.74). The active deformation systems were identified using electron backscattered diffraction-based slip-trace analysis and SEM images of the specimen surface. The distribution of the active deformation systems varied as a function of temperature. Basal slip deformation played a major role in the tensile deformation behaviour, and the relative activity of basal slip increased with increasing temperature. For the 296 K tension deformation, basal slip was less active than prismatic slip, whereas this was reversed at 728 K. Twinning was observed in both the 296 and 728 K tension experiments; however, no more than 4% of the total deformation systems observed was twins. The tension-creep experiment revealed no slip traces, however grain boundary ledge formation was observed, suggesting that grain boundary sliding was an active deformation mechanism. The results of this work were compared with those from previous studies on commercially pure Ti, Ti–5Al–2.5Sn (wt.%) and Ti–8Al–1Mo–1V (wt.%), and the effects of alloying on the deformation behaviour are discussed. The relative amount of basal slip activity increased with increasing Al content.  相似文献   

4.
G. Sainath  P. Rohith 《哲学杂志》2013,93(29):2632-2657
Abstract

Molecular dynamics simulations have been performed to understand the size-dependent tensile deformation behaviour of 〈1 0 0〉 Cu nanowires at 10 K. The influence of nanowire size has been examined by varying square cross-section width (d) from 0.723 to 43.38 nm using constant length of 21.69 nm. The results indicated that the yielding in all the nanowires occurs through nucleation of partial dislocations. Following yielding, the plastic deformation in small size nanowires occurs mainly by slip of partial dislocations at all strains, while in large size nanowires, slip of extended dislocations has been observed at high strains in addition to slip of partial dislocations. Further, the variations in dislocation density indicated that the nanowires with d > 3.615 nm exhibit dislocation exhaustion at small strains followed by dislocation starvation at high strains. On the other hand, small size nanowires with d < 3.615 nm displayed mainly dislocation starvation at all strains. The average length of dislocations has been found to be same and nearly constant in all the nanowires. Both the Young’s modulus and yield strength exhibited a rapid decrease at small size nanowires followed by gradual decrease to saturation at larger size. The observed linear increase in ductility with size has been correlated with the pre- and post-necking deformation. Finally, dislocation–dislocation interactions leading to the formation of various dislocation locks, the dislocation–stacking fault interactions resulting in the annihilation of stacking faults and the size dependence of dislocation–surface interactions have been discussed.  相似文献   

5.
6.
R. Arnaldi  K. Banicz  K. Borer  J. Castor  B. Chaurand  W. Chen  C. Cicalò  A. Colla  P. Cortese  S. Damjanovic  A. David  A. de Falco  A. Devaux  L. Ducroux  H. En’yo  J. Fargeix  A. Ferretti  M. Floris  A. F?rster  P. Force  N. Guettet  A. Guichard  H. Gulkanyan  J. Heuser  M. Keil  L. Kluberg  Z. Li  C. Louren?o  J. Lozano  F. Manso  P. Martins  A. Masoni  A. Neves  H. Ohnishi  C. Oppedisano  P. Parracho  P. Pillot  T. Poghosyan  G. Puddu  E. Radermacher  P. Ramalhete  P. Rosinsky  E. Scomparin  J. Seixas  S. Serci  R. Shahoyan  P. Sonderegger  H. J. Specht  R. Tieulent  A. Uras  G. Usai  R. Veenhof  H. K. W?hri 《The European Physical Journal C - Particles and Fields》2009,64(1):1-18
The NA60 experiment has measured muon pair production in In–In collisions at 158 AGeV at the CERN SPS. This paper presents a high statistics measurement of φμ μ meson production. Differential spectra, yields, mass and width are measured as a function of centrality and compared to previous measurements in other colliding systems at the same energy. The width of the rapidity distribution is found to be constant as a function of centrality, compatible with previous results. The decay muon polar angle distribution is measured in several reference frames. No evidence of polarization is found as a function of transverse momentum and centrality. The analysis of the p T spectra shows that the φ has a small radial flow, implying a weak coupling to the medium. The T eff parameter measured in In–In collisions suggests that the high value observed in Pb–Pb in the kaon channel is difficult to reconcile with radial flow alone. The absolute yield is compared to results in Pb–Pb collisions: though significantly smaller than measured by NA50 in the muon channel, it is found to exceed the NA49 and CERES data in the kaon channel at any centrality. The mass and width are found to be compatible with the PDG values at any centrality and at any p T : no evidence for in-medium modifications is observed.  相似文献   

7.
The tension and tensile-creep deformation behaviours of a fully-α phase commercially pure (CP) Ti and a near-α Ti–5Al–2.5Sn(wt.%) alloy deformed in situ inside a scanning electron microscope were compared. Tensile tests were performed at 296 and 728?K, while tensile-creep tests were performed at 728?K. The yield stress of CP Ti decreased dramatically with increasing temperature. In contrast, temperature had much smaller effect on the yield stress of Ti–5Al–2.5Sn(wt.%). Electron backscattered diffraction was performed both before and after the deformation, and slip trace analysis was used to determine the active slip and twinning systems, as well as the associated global stress state Schmid factors. In tension tests of CP Ti, prismatic slip was the most likely slip system to be activated when the Schmid factor exceeded 0.4. Prismatic slip was observed over the largest Schmid factor range, indicating that the local stress tensor varies significantly from the global stress state of uniaxial tension. The basal slip activity in Ti–5Al–2.5Sn(wt.%) was observed in a larger faction of grains than in CP Ti. Pyramidal ?c?+?a? slip was more prevalent in CP Ti. Although twinning was an active deformation mode in tension tests of the CP Ti, it was rare in Ti–5Al–2.5Sn(wt.%). During creep, dislocation slip was the primary apparent deformation mechanism in CP Ti, while evidence for dislocation slip was much less apparent in Ti–5Al–2.5Sn(wt.%), where grain boundary sliding was dominant. A robust statistical analysis was carried out to assess the significance of the comparative activity of the different slip systems under the variety of experimental conditions examined.  相似文献   

8.
Simultaneous in situ pressure–resistance measurements were carried out up to 40 GPa using a multianvil apparatus with synchrotron-based X-ray diffraction (XRD) measurements. Pressure-induced electrical resistance changes in zirconium were measured at ambient temperatures and two discontinuities were observed around the α–ω and ω–β structural phase transitions. The transition pressures were strictly determined from simultaneous measurements of the electrical resistance and in situ XRD as 7.96±0.16 and 34.5±0.3 GPa, respectively, using an equation of state for gold as the pressure scale. The precisely determined transition pressures are available for room temperature pressure calibration points for large volume presses installed at offline laboratories.  相似文献   

9.
Electrical conductivities of mantle silicate minerals (Mg0·9Fe0·1)2SiO4 olivine, wadsleyite and ringwoodite were determined at pressures up to 20 GPa and temperatures up to 1400°C using complex impedance spectroscopy in a high pressure multianvil apparatus. All samples were polycrystalline, synthesized in separate high pressure experiments prior to the electrical measurements. Olivine conductivities up to 10 GPa are very close to values determined at ambient pressure under controlled oxygen fugacities in previous studies indicating a very small pressure dependence. The conductivities of wadsleyite at 15 GPa and ringwoodite at 20 GPa are similar, and both about 100 times greater than for olivine. When compared to conductivity models of Earth's mantle, these results suggest that the steep increase in conductivity near the transition zone is mainly due to the olivine to wadsleyite phase transformation at 410 km depth, with only minor changes in conductivity occurring over the wadsleyite to ringwoodite transformation near 520 km depth.  相似文献   

10.
In situ straining in the transmission electron microscope and diffraction-contrast electron tomography has been applied to investigate dislocation interactions in α-Ti. Dislocation debris, in the form of small loops, was seen to form from sequential cross-slip events. Electron tomography provided direct three-dimensional visualisation of the dislocation structures, allowing accurate identification of slip planes, dislocation line directions and spatial relations between dislocations.  相似文献   

11.
In situ straining in the transmission electron microscope and diffraction-contrast electron tomography have been applied to the investigation of dislocation/grain boundary and dislocation/twin boundary interactions in α-Ti. It was found that, similar to FCC materials, the transfer of dislocations across grain boundaries is governed primarily by the minimization of the magnitude of the Burgers vector of the residual grain boundary dislocation. That is, grain boundary strain energy density minimization determines the selection of the emitted slip system.  相似文献   

12.
The electrical conductances of very dilute solutions of the ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate [emim][BF4] and 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] in the low-permittivity solvent dichloromethane have been measured in the temperature range from 278.15 to 303.15 K at 5 K intervals. The data was analyzed assuming the possible presence of contact (CIP) and solvent-separated (SSIP) ion pairs in the solution on the basis of lcCM model to obtain ionic association constants, K A, and the limiting molar conductivities, Λo, of these electrolytes. The examined ionic liquids are strongly associated in dichloromethane over the whole temperature range. From the temperature dependence of the limiting molar conductivities, the Eyring’s activation enthalpy of charge transport was determined. The thermodynamic functions such as Gibbs energy, entropy, and enthalpy of the process of ion pair formation were calculated from the temperature dependence of the association constants.  相似文献   

13.
Transition probabilities have been calculated for n = 0 and n = 1 transitions connecting the 5s2nl [ np (n=5-8); nf (n=4-5); nh (n=6-8); nk (n=8)] , 5s5pnl (nl=5d,6s), 5p3 and 5s2nl [ (ns (n=6-8); nd (n=5-8); ng (n=5-6); ni (n=7-8)] and 5s5p2 configurations of Xe VI. Core-polarization effects have been included in the framework of a Hartree-Fock approach. The accuracy of the present set of results has been assessed through comparisons with radiative lifetime measurements. Good agreement has been observed between theory and experiment.  相似文献   

14.
Electronic structure of free and neutral Rb and K clusters containing from few tens to few hundred atoms has been studied using synchrotron radiation. Core-level photoelectron spectroscopy has been used to probe the metallic nature of Rb and K clusters. We show that the metallicity exists down to the dimensions of few nanometers. Simultaneously the emergence and evolution of the valence band structure has been monitored by the valence-level photoelectron spectroscopy.  相似文献   

15.
When a stress wave generated by focusing a femtosecond laser is loaded on an animal cell adhered on a substrate, the cell is detached from the substrate. There are two possible mechanisms for the cell detachment: (a) The cell is detached from a scaffold coated on a glass plate, and (b) the cell is detached from the glass plate with the scaffold. In this work, we have studied the cell-detachment mechanism by visualizing the scaffold with a fluorescence probe of quantum dots. When the cell was detached from the substrate, fluorescence from the scaffold simultaneously disappeared from the glass plate, although the scaffold was not irradiated by the laser. This indicates that detachment due to the stress wave is attributed to mechanism (a). On the other hand, when the cell was detached from the substrate by a trypsin treatment, the fluorescence from the scaffold remained, suggesting mechanism (b). By comparing both results, it is considered that physiological damage of the cell membrane during the detachment process by femtosecond laser-induced stress wave is less than that due to the trypsin treatment.  相似文献   

16.
The effect of swift heavy ion irradiation on ferromagnetic metallic glasses Fe40Ni38Mo4B18 and Fe78Si9B13 has been studied. The ion beams used are 100 MeV 127I and 180 MeV 197Au. The specimens were irradiated at fluences ranging from 3 × 1012 to 1.5 × 1014 ions/cm2. The irradiations have been carried out at temperatures 100 and 300 K. The magnetic moments are sensitive towards the irradiation conditions such as irradiation temperature and stopping power of incident ion beam. The irradiation-induced effects have been monitored, by using Mössbauer spectroscopy. The modifications in magnetic anisotropy and hyperfine magnetic field distributions, as an effect of different irradiation temperature as well as different stopping power have been discussed. After irradiation, all the samples remain amorphous and magnetic anisotropy considerably changes from its original in-plane direction. The results show enhancement in magnetic anisotropy in the specimen irradiated at 100 K, as compared to that of irradiated at 300 K. It is expected that at low temperature, the stresses produced in the material would remain un-annealed, compared to the samples irradiated at room temperature and therefore, the modification in magnetic anisotropy would be enhanced. A distribution of hyperfine magnetic field, of the samples irradiated at low temperature, show a small but distinct peak at ~?11 Tesla, indicating Fe-B pairing.  相似文献   

17.
An extruded Mg–1Mn–1Nd (wt%) (MN11) alloy was tested in tension in an SEM at temperatures of 323?K (50°C), 423?K (150°C), and 523?K (250°C) to analyse the local deformation mechanisms through in situ observations. Electron backscatter diffraction was performed before and after the deformation. It was found that the tensile strength decreased with increasing temperature, and the relative activity of different twinning and slip systems was quantified. At 323?K (50°C), extension twinning, basal, prismatic ?a?, and pyramidal ?c?+?a? slip were active. Much less extension twinning was observed at 423?K (150°C), while basal slip and prismatic ?a? slip were dominant and presented similar activities. At 523?K (250°C), twinning was not observed, and basal slip controlled the deformation.  相似文献   

18.
This paper presents results from the study of two fragments of pre-Hispanic pottery, decorated with red pigment, using Optical Microscopy (OM), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM), Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM). Capabilities and limitations of these techniques in the analysis of archaeological material are highlighted with special emphasis on TEM, AFM and MFM due to their contribution in the study of the pigment layer at micro and nano scale. The analyzed samples come from the archaeological sites of El Tajin and Xochicalco, both in Mexico. Results of conventional TEM and HRTEM analysis of the red pigment showed nanometric Fe2O3 particles in both samples but different particle shape and size distributions: specimen from El Tajin presented irregular particles between 50–100 nm while that from Xochicalco exhibited semispherical shapes in the 3–25 nm range. AFM images showed the topography of the pigments, which are related to the texture of their surface and thus to the production process. Finally, MFM showed different contrast regions suggesting the presence of ferromagnetic elements forming clusters and domain orientations on the color layer.  相似文献   

19.
Eight illites with an iron content between 0.8% and 8.4%, which X-ray diffraction indicated to be free from interference from other iron-bearing minerals, were studied by Mössbauer spectroscopy at room temperature and 4.2 K. The Fe3+ quadrupole splitting varied from 0.59 mm/s for the iron-rich illites (>5 wt.% Fe) to 0.73 mm/s for those poor in iron (wt.% Fe). A distinction of iron sites in the illites with cis- and trans-OH coordination was not possible. The products of firing one illite at temperatures up to 1300 C were also studied and revealed the disappearance of Fe2+, the gradual dehydroxylation of illite, and characteristic features of the products formed at higher temperatures.  相似文献   

20.
By means of the Weyl correspondence and Wigner theorem the marginal distribution of Wigner function in mesoscopic RLC circuit at finite temperature was discussed. Here we endow the Wigner function with a new physical meaning, i.e., its marginal distributions’ statistical average for q 2/(2C) and p 2/(2L) are the temperature-related energy stored in capacity and in inductance of the mesoscopic RLC circuit, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号