首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of oxygen plasma treatment on the non-equilibrium dynamic adsorption of the carbon fabric reinforcements in RTM process was studied. 5-Dimethylamino-1-naphthalene-sulfonylchloride (DNS-Cl) was attached to the curing agent to study the change of curing agent content in the epoxy resin matrix. Steady state fluorescence spectroscopy (FS) analysis was used to study this changes in the epoxy resin at the inlet and outlet of the RTM mould, and XPS was used to study the chemical changes on the carbon fiber surfaces introduced by plasma treatment. The interlaminar shear strength (ILSS) and flexural strength were also measured to study the effects of this non-equilibrium dynamic adsorption progress on the mechanical properties of the end products. FS analysis shows that the curing agent adsorbed onto the fiber surface preferentially for untreated carbon fiber, the curing agent content in the resin matrix maintain unchanged after plasma treatment for 3 min and 5 min, but after oxygen plasma treatment for 7 min, the epoxy resin adsorbed onto the fiber surface preferentially. XPS analysis indicated that the oxygen plasma treatment successfully increased some polar functional groups concentration on the carbon fiber surfaces, this changes on the carbon fiber surfaces can change the adsorption ability of carbon fiber to the resin and curing agent. The mechanical properties of the composites were correlated to this results.  相似文献   

2.
The mechanical properties of carbon fiber reinforced polymer composites depend upon fiber-matrix interfacial properties. To improve the mechanical properties of ?bers/PTFE composites without sacri?cing tensile strength of ?bers, graphene oxide (GO) was introduced onto the surface of CFs by chemical vapour deposition (CVD). This hybrid coating increased the wettability and surface roughness of carbon fibers, which led to improved affinity between the carbon fibers and PTFE matrix. The resulting hybrid-coated carbon fiber-reinforced composites showed an enhancement in the short beam strength compared to un-coated carbon fiber composites. Meanwhile, a signi?cant increase of interlaminar shear strength (ILSS), interface shear strength tests (IFSS) and impact property were achieved in the 5-min-modi?ed CFs.  相似文献   

3.
Multiscale glass fiber epoxy matrix composites containing nanodiamonds were fabricated using vacuum bagging technique. Three different loadings of nanodiamonds were incorporated in epoxy resin after their functionalization through ozone-treatment, i.e., 0.1, 0.3 and 0.5 wt%. The functionalization of nanodiamonds was confirmed by infrared spectroscopy, which improved the dispersion of nanodiamond in epoxy resin thus improving the mechanical properties. Tensile, compression, flexural and interlaminar shear properties of the composites were improved. The tensile, compression and flexural strengths improved up to 36, 56 and 30% by the addition of 0.5 wt% nanodiamonds while the corresponding moduli increased to 30, 125 and 46%, respectively. An improvement of 38% in interlaminar shear strength was observed. The microscopy of the composites was performed using optical and electron microscopy and proper impregnation of glass fibers and the absence of the agglomerates of nanodiamonds were ensured. The homogeneous dispersion of nanodiamonds and their adhering role at fiber/matrix interface improved the mechanical properties of the composites. The developed composites are ideal candidate materials for engineering applications demanding high specific mechanical properties.  相似文献   

4.
《Composite Interfaces》2013,20(5-6):401-410
_The effect of surface treatment on mechanical properties of carbon fibers has been investigated by application of plasma polymerization of selected monomers in the vapor phase. The role of the fiber-matrix interface on carbon fiber-reinforced epoxy resin composites has also been studied. Composites have been prepared separately by the use of plasma-modified and unmodified carbon fibers in the epoxy resin matrix. The mechanical properties of carbon fibers (Hercules and Grafil) as well as of fiber/epoxy composites were examined by using single filament and three-point bending tests, respectively. It was observed that plasma polymerization treatment at selected plasma conditions led to significant improvement of interlaminar shear and flexural strength values of composites.  相似文献   

5.
《Composite Interfaces》2013,20(2-3):215-229
The dynamic mechanical thermal properties of carbon fiber-reinforced bismaleimide (BMI) composites processed using polyacrylonitrile(PAN)-based carbon fibers unsized and sized with LaRC PETI-5 amic acid oligomer as interphase material at 150°C, 250°C, and 350°C were investigated by means of dynamic mechanical thermal analysis. It was found that the storage modulus, loss modulus, tan δ and the peak temperature significantly depend on the sizing temperature as well as on the presence and absence of LaRC PETI-5 sizing interphase. The result showed that the carbon fiber/BMI composite sized at 150°C had the highest storage modulus at a measuring temperature of 250°C. The storage modulus decreased with increasing sizing temperature from 150°C to 350°C, being influenced by interdiffusion and co-reaction between the LaRC PETI-5 interphase and the BMI matrix resin. The present result is quite consistent with the interfacial result reported earlier in term of interfacial shear strength and interlaminar shear strength of carbon fiber/BMI composites. It is addressed that in the present composite system the sizing temperature of LaRC PETI-5 interphase critically influences not only the interfacial properties but also the dynamic mechanical thermal properties and its control is also important.  相似文献   

6.
Rubber magnetic composites were prepared by incorporation of strontium ferrite into natural rubber-based continuous matrix. The prepared rubber compounds have model character and besides the rubber and the filler, they contained only ingredients of peroxide curing system, dicumyl peroxide as curing agent, and ethylene glycol dimethacrylate as co-agent. The work was focused on the evaluation of curing system composition and magnetic filler content on curing process, cross-link density, physical–mechanical and magnetic properties of tested materials. The achieved results revealed that the evaluated properties are dependent on the composition of curing system and on the content of ferrite too. Ferrite incorporated in the rubber matrix imparts magnetic properties to the composites considerably. In addition, the improvement of physical–mechanical properties with doping content of ferrite was observed.  相似文献   

7.
《Composite Interfaces》2013,20(8):775-788
The incorporation of nanotube-covered fibers in continuous fiber/epoxy composites has been shown to influence the mechanical, electrical, and thermal properties of the composite. Increased interlaminar shear stress, flexural strength and modulus have been reported in such composites over composites containing bare fibers. In this study, the microstructure and interfacial shear strength (ISS) of continuous silicon carbide fiber/epoxy composites with and without nanotubes grown from the SiC fiber surface were investigated with micro-Raman spectroscopy (MRS) and microscopy. The fibers with nanotubes grown from the surface were found to have a reduced ISS compared with the bare fibers. Electron microscopy showed good wetting of epoxy in the nanotube forests, but poor attachment of the nanotube forests to the fibers. These results suggest that the mechanism leading to improvements in bulk composite properties is not due to an improvement in the fiber/matrix ISS.  相似文献   

8.
李镇江  梁玮  孙鹏  张林 《强激光与粒子束》2012,24(11):2660-2664
采用二官能度环氧树脂对己二胺进行改性,得到了含多段长亚甲基链段的柔性固化剂。利用红外光谱表征其基本结构。采用环氧树脂E-44与之进行固化,通过不同温度下固化时间对力学强度影响的分析,初步确定其最佳固化条件为80 ℃,6 h。通过热重分析检测不同固化比例下固化产物的热稳定性,并采用差示扫描量热法研究该固化剂的固化动力学参数、反应活性、最佳固化温度及时间。对其固化物拉伸剪切强度进行测试,测试结果表明:在固化比例为1:0.5时,在-196 ℃、室温、60 ℃下的拉伸剪切强度分别为16.84,14.73和13.52 MPa,基本满足实际应用的需求。  相似文献   

9.
Interfacial modification for carbon fiber (CF) reinforced polyarylacetylene (PAA) resin, a kind of non-polar, was investigated. The high carbon phenolic resin was used as coating to treat the surface of CF after oxidation. Atomic force microscopy (AFM) with force modulation mode was used to analyze the interphase of composite. The interlaminar shear strength (ILSS) and mechanical properties of CF/PAA composites were also measured. It was found that the CF/PAA composites treated with oxidation and coating after oxidation had transition area between carbon fiber and PAA resin. The existence of transition area led to the improvement of interfacial performance of composites. Specially, the thickness and stiffness of interphase of composite treated with coating after oxidation were more suitable for CF/PAA composites. Thus, the composite treated with coating after oxidation had the highest value of ILSS and the best mechanical properties.  相似文献   

10.
《Composite Interfaces》2013,20(5):443-453
Three different temperature schemes were applied on carbon fiber/epoxy composite to elucidate the effect on interfacial shear strength (IFSS) and inter-laminar shear strength (ILSS). It showed that carbon fiber/epoxy IFSS was significantly influenced by the processing temperature, while ILSS was only slightly changed. Moreover, the mechanical properties revealed no necessary relationship between the micro- and macro-interfacial strengths with the properties of epoxy matrix. Among all the temperature schemes, Pro2 (the one-platform curing scheme with relatively rapid heating rate) produced highest IFSS and ILSS. Fourier transform infrared spectroscopy analysis demonstrated that the sizing agent can chemically react itself and also react with epoxy resin at temperature 180?°C. The resin rheological data showed that different temperature schemes can considerably impact diffusion behavior of the resin molecules. Hence, the highest interfacial strengths for Pro2 scheme were ascribed to large extent of chemical reactions and good inter-diffusion between components, at the interface region.  相似文献   

11.
In this article, polyimide (PI) fibers were modified by alkali treatment, and PI fiber-reinforced epoxy composites were fabricated. The effects of different alkali treatment times on the surface properties of the PI fibers and the adhesion behaviors of PI fiber/epoxy composites were studied. The surface morphologies, chemical compositions, mechanical properties, and surface free energy of the PI fibers were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, single-fiber tensile strength analysis, and dynamic contact angle analysis, respectively. The results show that alkali treatment plays an important role in the improvement of the surface free energy and the wettability of PI fibers. We also found that, after the 3 min, 30 °C, 20 wt% NaOH solution treatment, the fibers possessed good mechanical properties and surface activities, and the interlaminar shear strength of the composites increased to 64.52 MPa, indicating good interfacial adhesion properties.  相似文献   

12.
This paper reports on the comprehensive characterisation of heat treated kenaf fibre (KF) and its composites. The kenaf fibres were modified by heating for 2.5–12.5 h inside a drying oven. Heat treatment produces an increase in the crystallinity index and fibre strength of KF. The highest value of KF strength was recorded by applying heat treatment of 10 h on KF. The heat treatment results in the partial removal of impurities/extractives on the KF surface which is detected by scanning electron microscopy and X-ray photoelectron spectroscopy. Atomic force microscopy results signify the decrease of roughness, the increase in peak area density and the increase of the adhesion force on the surface area of heat treated KF. The effect of the heat treatment in enhancing the interface bonding characteristics between the KF and unsaturated polyester matrix can be reflected by the interlaminar shear strength (ILSS) and dynamic mechanical analysis value of the composites. The flexural properties of the composites showed a similar trend to ILSS. However, the fracture toughness revealed contrasting results. Water absorption induced a drastic loss of the mechanical properties of the composites albeit better retention of properties was observed in the case of heat-treated KF composites.  相似文献   

13.
Controlling interfacial microstructure and interactions between (ultra high molecular weight polyethylene) UHMWPE fiber and matrix is of crucial importance for the fabrication of advanced polymer composites. In this paper, (UHMWPE fiber-g-graphene oxide [GO]) was prepared. GO nanoparticles distributed onto the ?ber surface uniformly, which could increase surface polarity and roughness. Increases of interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of UHMWPE fiber-g-GO composites were achieved. These enhancements can be attributed to the existent of GO interface with providing chemical bonding and strong mechanical interlocking between the ?ber and matrix. Moreover, impact resistance of UHMWPE fiber-g-GO composites was enhanced.  相似文献   

14.
Surface modification of a para-aramid fiber (DAFIII) was performed by direct fluorination. The properties of treated and untreated fibers were characterized and compared in detail by mechanical testing, Fourier transform infrared (FTIR) spectroscopy characterization, X-ray photoelectron spectroscopy (XPS) analysis and static contact angle measurements. The results showed that little damage of the fiber occurred after direct fluorine treatment, and the content of polar groups on the fibers surfaces were increased significantly, which resulted in a lower value of contact angle. The interlaminar shear strength (ILSS) of DAFIII fiber/epoxy composites and the tensile strength of NOL-ring specimens increased by 33% and 12%, increasing to 56.2 MPa and 2340 MPa, respectively, which indicated that the interfacial adhesion between the matrix and the aramid fiber was improved significantly by the fluorination treatment. Further tests showed that the durability of the direct fluorination treatment on the aramid fiber was also satisfactory.  相似文献   

15.
A novel, simple and cost-effective method, which is capable of easily tailoring the dispersion of multi-walled carbon nanotubes (MWCNTs), was developed here to fabricate the MWCNT–glass fiber fabric (MWCNT–GFf) multiscale composites with tunable mechanical properties. MWCNTs were dispersed into the commercial GFfs through the combined effect of the ultrasound and amino silane (AS) firstly, followed by a resin infusion process. By tuning the ultrasonic power and AS concentration, it is possible to control the MWCNTs dispersion level and subsequently mechanical properties of resultant composite. Making use of optimal dispersion conditions, which involves the optimal combination of ultrasonic power and AS concentration, the interlaminar shear strength of MWCNT–GFf reinforced composites was dramatically increased by 40.5%, and the storage modulus in the glassy region and rubbery region was improved by 27.7% and 125.0%, respectively. The work demonstrates the great promise of this novel method toward practical, industrial application in manufacturing fiber-reinforced composites with superior mechanical properties.  相似文献   

16.
The influence of different molecular weight sizing agent on the performances of carbon fibres and carbon fibres composites were studied. Three different kinds of molecular weight sizing were used. Surface composition of the fibres modified with aqueous sizing and topographies of carbon fibres surface were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscope (SEM). The interlaminar shear strength and hygrothermal ageing test have been used to study the effect of fibres coatings on the adhesion of surface. The results of the study indicate that the molecular weight of sizing agent has an important influence to the carbon fibres and carbon fibres composites. The high and low molecular weight sizing agent decreased the interfacial shear strengths and hygrothermal ageing of carbon fibres composite. The moderate molecular weight of sizing agent showed an improvement of the interfacial adhesion and hygrothermal ageing.  相似文献   

17.
《Composite Interfaces》2013,20(2):207-218
This paper reports the second part of the results from the round robin test program proposed by the Society of Interfacial Materials Science (SIMS) to characterise the interlaminar fracture behaviour of E-glass woven fabric reinforced vinylester composites. Special emphasis was placed on the study of loading direction (i.e. weft and warp directions) effect on interlaminar shear strength and fracture toughness. Ten laboratories worldwide participated in this test (Table 1). Each laboratory was supplied with composite laminates and conducted the tests according to its own procedure. The results showed that although there were large variations in absolute magnitude between laboratories, a general trend was established with higher interlaminar fracture resistance in the weft direction than in the warp direction for a given silane agent. The larger number of strands running in the warp direction with rougher, more undulating areas perpendicular to the direction of crack propagation was mainly responsible for this result. The results also confirmed the previous finding that the mode I interlaminar fracture toughness increased with increasing silane agent concentration.  相似文献   

18.
Aramid fiber/epoxy composites have been treated by ultrasound during the winding process to enhance the adhesion. According to the ultrasonic treatment interlaminar shear strength (ILSS) of composites has been greatly improved. Dynamic wetting method, XPS and AFM are used to examine the microscopic properties of resultant composites. The enhanced ILSS is attributed to the ultrasonic cavitation, which improves the wetting between aramid fibers and resins.  相似文献   

19.
Ultrahigh molecular weight polyethylene (UHMWPE) fibers were treated with a coupling agent following the extraction of gel fibers, resulting in modified fibers after subsequent ultra-drawing. The structure and morphology of the modified UHMWPE fibers were characterized and their surface wetting, interfacial adhesion, and mechanical properties were investigated. It was found that the coupling agent was absorbed into the UHMWPE fiber and trapped on the fiber surface. Compared with unmodified UHMWPE fibers, the modified fibers had smaller contact angle, higher crystallinity, and smaller crystal size. The interfacial adhesion and mechanical properties of UHMWPE fibers were significantly improved with increasing coupling agent concentration and gradually reached a plateau value. After treatment with 1.5 wt% solution of a silane coupling agent (γ -aminopropyl triethoxysilane, SCA-KH-550), the interfacial shear strength of the UHMWPE-fiber/epoxy composites was increased by 108% and the tensile strength and modulus of modified UHMWPE fibers were increased by 11% and 37% respectively.  相似文献   

20.
Banana fiber (BF)-reinforced low-density polyethylene (LDPE) unidirectional composites were fabricated by the compression molding process with 40 wt% fiber loading. The fibers were modified with methylacrylate (MA) mixed with methanol (MeOH) along with 2% benzyl peroxide under thermal curing method at different temperatures (50–90 °C) for different curing times (10–50 min) in order to have better compatibility with the matrix. The effect of fiber surface modification on the mechanical properties (tensile and impact properties) of the composites were evaluated. Monomer concentration, curing temperature, and curing time were optimized in terms of polymer loading and mechanical properties. The mechanical properties were found to be improved based on the improved interaction between the reinforcement and the matrix. Optimized BFs were again treated with 2–5 wt% starch solutions and composites made of 4% starch treated BF showed the highest mechanical properties than that of MA treated composites. Scanning electron microscopy (SEM) was performed to get an insight into the morphology of the composites. Water uptake and soil degradation test of the composites were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号