首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this paper, we present an extensive study of the linearly forced isotropic turbulence. By using analytical method, we identify two parametric choices, of which they seem to be new as far as our knowledge goes. We prove that the underlying nonlinear dynamical system for linearly forced isotropic turbulence is the general case of a cubic Lienard equation with linear damping. We also discuss a FokkerPlanck approach to this new dynamical system, which is bistable and exhibits two asymmetric and asymptotically stable stationary probability densities.  相似文献   

2.
This paper studies existence of at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, by using the Green function and maximum principle, existence of solutions of a nonlinear telegraph system is equivalent to existence of fixed points of an operator. By imposing growth conditions on the nonlinearities, existence of at least three fixed points in cone is obtained by using the Leggett-Williams fixed point theorem to cones in ordered Banach spaces. In other words, there exist at least three positive doubly periodic solutions of nonlinear telegraph system.  相似文献   

3.
In this paper, the periodic solutions of the smooth and discontinuous (SD) oscillator, which is a strongly irrational nonlinear system are discussed for the system having a viscous damping and an external harmonic excitation. A four dimensional averaging method is employed by using the complete Jacobian elliptic integrals directly to obtain the perturbed primary responses which bifurcate from both the hyperbolic saddle and the non-hyperbolic centres of the unperturbed system. The stability of these periodic solutions is analysed by examining the four dimensional averaged equation using Lyapunov method. The results presented herein this paper are valid for both smooth ( α > 0) and discontinuous ( α = 0) stages providing the answer to the question why the averaging theorem spectacularly fails for the case of medium strength of external forcing in the Duffing system analysed by Holmes. Numerical calculations show a good agreement with the theoretical predictions and an excellent efficiency of the analysis for this particular system, which also suggests the analysis is applicable to strongly nonlinear systems.  相似文献   

4.
This paper presents a high order symplectic conservative perturbation method for linear time-varying Hamiltonian system.Firstly,the dynamic equation of Hamiltonian system is gradually changed into a high order perturbation equation,which is solved approximately by resolving the Hamiltonian coefficient matrix into a "major component" and a "high order small quantity" and using perturbation transformation technique,then the solution to the original equation of Hamiltonian system is determined through a series of inverse transform.Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes,the transfer matrix is a symplectic matrix;furthermore,the exponential matrices can be calculated accurately by the precise time integration method,so the method presented in this paper has fine accuracy,efficiency and stability.The examples show that the proposed method can also give good results even though a large time step is selected,and with the increase of the perturbation order,the perturbation solutions tend to exact solutions rapidly.  相似文献   

5.
For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraintinvariant. Firstly, the constrained generalized Hamiltonian system with dissipative was converted to the non-constraint generalized Hamiltonian system, then Lie group integration algorithm for the non-constraint generalized Hamiltonian system was discussed, finally the projection method for generalized Hamiltonian system with constraint was given. It is found that the constraint invariant is ensured by projection technique, and after introducing Lagrange multiplier the Lie group character of the dynamic system can‘ t be destroyed while projecting to the constraint manifold. The discussion is restricted to the case of holonomic constraint. A presented numerical example shows the effectiveness of the method.  相似文献   

6.
Time delay is an important parameter in the problem of internet congestion control. According to some researches, time delay is not always constant and can be viewed as a periodic function of time for some cases. In this work, an internet congestion control model is considered to study the time-varying delay induced bursting-like motion, which consists of a rapid oscillation burst and quiescent steady state. Then, for the system with periodic delay of small amplitude and low frequency, the method of multiple scales is employed to obtain the amplitude of the oscillation. Based on the expression of the asymptotic solution, it can be found that the relative length of the steady state increases with amplitude of the variation of time delay and decreases with frequency of the variation of time delay. Finally, an effective method to control the bursting-like motion is proposed by introducing a periodic gain parameter with appropriate amplitude. Theoretical results are in agreement with that from numerical method.  相似文献   

7.
This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifurcation sequence occurs at the pos- itive equilibrium as the delay passes through a sequence of critical values. The explicit algorithms for determining the Hopf bifurcation direction and the stability of the bifur- cating periodic solutions are derived with the normal form theory and the center manifold theory. The global existence of periodic solutions is also established with the method of Wu (Wu, J. H. Symmetric functional differential equations and neural networks with memory. Transactions of the American Mathematical Society 350(12), 4799-4838 (1998)).  相似文献   

8.
9.
Both the primary resonant solutions and their bifurcations due to time delayed velocity feedbacks used in a self-sustained oscillator with excitation were further investigated. A model was proposed by adding linear and nonlinear time delayed feedbacks to a representative non- autonomous system ( with external forcing ). The stability condition of the linearized system at trivial equilibrium was discussed, which leads to a critical stability boundary where periodic solutions may occur. The main attention was focused on bifurcations from the primary resonant solutions. It is found that the stable primary resonant solution may appear periodically in the time delay. Meanwhile, the unstable regions for such solutions are also obtained, predicting the occurrence of quasi-periodic motions.  相似文献   

10.
We considered the longtime behavior of solutions of a coupled lattice dynamical system of Klein-Gordon-Schroedinger equation (KGS lattice system). We first proved the existence of a global attractor for the system considered here by introducing an equivalent norm and using "End Tails" of solutions. Then we estimated the upper bound of the Kolmogorov delta-entropy of the global attractor by applying element decomposition and the covering property of a polyhedron by balls of radii delta in the finite dimensional space. Finally, we presented an approximation to the global attractor by the global attractors of finite-dimensional ordinary differential systems.  相似文献   

11.
The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are Used to obtain the bifurcation equation. Interestingly, for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical. It is found, mathematically, this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter. The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method.  相似文献   

12.
We investigate a stage-structured delayed predator-prey model with impulsive stocking on prey and continuous harvesting on predator. According to the fact of biological resource management, we improve the assumption of a predator-prey model with stage structure for predator population that each individual predator has the same ability to capture prey. It is assumed that the immature and mature individuals of the predator population are divided by a fixed age, and immature predator population does not have the ability to attach prey. Sufficient conditions are obtained, which guarantee the global attractivity of predator-extinction periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Numerical analysis is presented to illuminate the dynamics of the system.  相似文献   

13.
This paper applies a Hamiltonian method to study analytically the stress dis- tributions of orthotropic two-dimensional elasticity in(x,z)plane for arbitrary boundary conditions without beam assumptions.It is a method of separable variables for partial differential equations using displacements and their conjugate stresses as unknowns.Since coordinates(x,z)can not be easily separated,an alternative symplectic expansion is used. Similar to the Hamiltonian formulation in classical dynamics,we treat the x coordinate as time variable so that z becomes the only independent coordinate in the Hamiltonian ma- trix differential operator.The exponential of the Hamiltonian matrix is symplectic.There are homogenous solutions with constants to be determined by the boundary conditions and particular integrals satisfying the loading conditions.The homogenous solutions consist of the eigen-solutions of the derogatory zero eigenvalues(zero eigen-solutions) and that of the well-behaved nonzero eigenvalues(nonzero eigen-solutions).The Jordan chains at zero eigenvalues give the classical Saint-Venant solutions associated with aver- aged global behaviors such as rigid-body translation,rigid-body rotation or bending.On the other hand,the nonzero eigen-solutions describe the exponentially decaying localized solutions usually ignored by Saint-Venant's principle.Completed numerical examples are newly given to compare with established results.  相似文献   

14.
This paper presents a closed form solution to the dynamic stability problem of a beam-column system with hinged ends loaded by an axial periodically time-varying compressive force of an elliptic type,i.e.,a1cn 2(τ,k 2)+a2sn 2(τ,k 2)+a3dn 2(τ,k 2).The solution to the governing equation is obtained in the form of Fourier sine series.The resulting ordinary differential equation is solved analytically.Finding the exact analytical solutions to the dynamic buckling problems is difficult.However,the availability of exact solutions can provide adequate understanding for the physical characteristics of the system.In this study,the frequency-response characteristics of the system,the effects of the static load,the driving forces,and the frequency ratio on the critical buckling load are also investigated.  相似文献   

15.
This paper deals with a class of upper triangular infinite-dimensional Hamiltonian operators appearing in the elasticity theory.The geometric multiplicity and algebraic index of the eigenvalue are investigated.Furthermore,the algebraic multiplicity of the eigenvalue is obtained.Based on these properties,the concrete completeness formulation of the system of eigenvectors or root vectors of the Hamiltonian operator is proposed.It is shown that the completeness is determined by the system of eigenvectors of the operator entries.Finally,the applications of the results to some problems in the elasticity theory are presented.  相似文献   

16.
This paper deals with the forced longitudinal vibration ora rod carrying a concentrated mass and supported by a spring at one end. The vibration of the rod is excited by the motion of the support point at the other end Since the boundary conditions of the problem are complex and it is necessary to consider the damping, we determine only the steady state periodic solution. First the linear system is analysed, then the material nonlinearity is considered and the approximate analytic solution of nonlinear partial differential equation with nonlinear boundary conditions is obtained by the perturbation method.  相似文献   

17.
By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state variables at two ends of the time interval are taken as independent variables.Based on the dual variable principle,nonlinear optimal control problems are replaced with nonlinear equations.Furthermore,in the implementation of the symplectic algorithm,based on the 2N algorithm,a multilevel method is proposed.When the time grid is refined from low level to high level,the initial state and costate variables of the nonlinear equations can be obtained from the Lagrange interpolation at the low level grid to improve efficiency.Numerical simulations show the precision and the efficiency of the proposed algorithm in this paper.  相似文献   

18.
Symplectic solution system for reissner plate bending   总被引:3,自引:0,他引:3  
Based on the Hellinger-Reissner variatonal principle for Reissner plate bendingand introducing dual variables, Hamiltonian dual equations for Reissner plate bending werepresented. Therefore Hamiltonian solution system can also be applied to Reissner platebending problem, and the transformation from Euclidian space to symplectic space and fromLagrangian system to Hamiltonian system was realized. So in the symplectic space whichconsists of the original variables and their dual variables, the problem can be solved viaeffective mathematical physics methods such as the method of separation of variables andeigenfunction-vector expansion. All the eigensolutions and Jordan canonical formeigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail, and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed. It is showed that the alleigensolutions for zero eigenvalue are basic solutions of the Saint-Venant problem and theyform a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzeroeigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is notthe same as the classical semi-inverse method and breaks through the limit of the traditional semi-inverse solution. The symplectic solution method will have vast application.  相似文献   

19.
Active control of bending waves in a periodic beam by the Timoshenko beam theory is concerned. A discussion about the possible wave solutions for periodic beams and their control by forces is presented. Wave propagation in a periodic beam is studied. The transfer matrix between two consecutive unit cells is obtained based on the continuity conditions. Wave amplitudes are derived by employing the Bloch-Floquet theorem and the transfer matrix. The influences of the propagating constant on the wave amplitudes are considered. It is shown that vibrations are still needed to be suppressed in the pass-band regions. Wave-suppression strategy described in this paper is employed to eliminate the propagating disturbance of an infinite periodic beam. A minimum wave-suppression strategy is compared with the classical wave-suppression strategy.  相似文献   

20.
Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号