首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
Natural organic matter (NOM) is a complex and non-uniform mixture of organic compounds which plays an important role in environmental processes. Due to the complexity, it is challenging to obtain fully detailed structural information about NOM. Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has been demonstrated to be a powerful tool for providing molecular information about NOM, multiple ionization methods are needed for comprehensive characterization of NOM at the molecular level considering the ionizing selectivity of different ionization methods. This paper reports the first use of matrix assisted laser desorption/ionization (MALDI) method coupled with FT-ICR-MS for molecular characterization of NOM within a mass range of 200–800 Da. The mass spectral data obtained by MALDI were systematically compared with data generated by electrospray ionization (ESI). It showed that complementary molecular information about NOM which could not be detected by ESI, were provided by MALDI. More unsaturated and aromatic constituents of NOM with lower O/C ratio (O/C ratio < 0.5) were preferentially ionized in MALDI negative mode, whereas more polar constituents of NOM with higher O/C ratio were preferentially ionized in ESI negative mode. Molecular anions of NOM appearing at even m/z in MALDI negative ion mode were detected. The results show that NOM molecules with aromatic structures, moderate O/C ratio (0.7 > O/C ratio > 0.25) and lower H/C ratio were liable to form molecular anions at even m/z, whereas those with higher H/C ratio are more likely to form deprotonated ions at odd m/z. It is speculated that almost half of the NOM molecules identified by MALDI may be aromatic or condensed aromatic compounds with special groups which are liable to absorb electron from other molecules to generate free radical anions during MALDI ionization.  相似文献   

2.
Subcritical water extraction of organic matter containing sedimentary rocks at 300 °C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300 °C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300 °C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300 °C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300 °C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities.  相似文献   

3.
The preferential sorption of model compounds to calcium-exchanged montmorillonite surfaces was investigated using 1H high-resolution magic-angle spinning (HR-MAS) and liquid-state NMR. Synthetic mixtures, representing the major structural categories abundant in natural organic matter (NOM), and two soil extracts were sorbed to montmorillonite. The NMR spectra indicate that, of the organic components observable by 1H HR-MAS NMR, aliphatic components preferentially sorb to the clay surface, while carbohydrates and amino acids mainly remain in the supernatant. These results may help explain the highly aliphatic nature of organic matter associated with clay fractions in natural soils and sediments. Investigations using the synthetic mixtures demonstrate a specific interaction between the clay surface and the polar region in 1-palmitoyl-3-stearoyl-rac-glycerol. Similar observations were obtained with natural soil extracts. The results presented have important implications for understanding the role of organoclay complexes in natural processes, and provides preliminary evidence that HR-MAS NMR is a powerful analytical technique for the investigation of organoclay complex structure and conformation.  相似文献   

4.
The subsurface sorption of Suwannee River fulvic acid (SRFA) and humic acid (SRHA) onto a synthetic aquifer material (iron-oxide-coated quartz) and two natural aquifer materials (Ringold sediment and Bemidji soils) was studied in both batch and column experiments. The hypothesis that hydrophobic effects followed by ligand exchange are the dominant mechanism contributing to the chemical sorption happening between dissolved natural organic matter (NOM) and the mineral surfaces is supported by observations of several phenomena: nonlinear isotherms, faster sorption rates versus slower desorption rates, phosphate competition, a solution pH increase during NOM sorption, and functional groups and aromaticity-related sorption. In addition, high-pressure size exclusion chromatography (HPSEC) and carboxylic acidity showed that lower molecular weight NOM components of SRHA are preferentially sorbed to iron oxide, a result in contrast to that for SRFA. Phosphate increased the desorption of sorbed NOM as well as soil organic matter. All of these trends support ligand exchange as the dominant reaction between NOM and the iron oxide surfaces; however, if the soil surface has been occupied by soil organic matter, then the sorption of NOM is more due to hydrophobic effect.  相似文献   

5.
Amphiphilic natural organic matter (NOM) in soil, water and sediments plays an important role in the fate of low-soluble hydrophobic organic compounds (HOC) in the environment. Scaling NOM structural factors, which affect the transport and immobilization of HOC, is rather involved due to the complexity of the NOM materials. Sorption properties of hydrophobically modified polyacrylic (HMPA) polymers as NOM model substances for pyrene were investigated and discussed with regard to reported NOM results. Emission fluorescence spectroscopic properties of pyrene and potentiometric titrations were used to characterize the hydrophobic and acidic properties of HMPA samples. Excitation fluorescence spectroscopy allowed a speciation of pyrene molecules. Overall complexation constants β1 and β2 of pyrene with hydrophobic moieties (–C8H17) and (–C16H33) were calculated depending on the pH and electrolyte cation nature at an ionic strength of 10 mM, typical of soil solution conditions. Aggregation of HMPA molecules was detected by photon correlation spectroscopy. Normalized sorption constant Koc values for pyrene with HMPA samples similar to reported values with NOM support recent observations on the contribution of aliphatic moieties to the binding of polyaromatic hydrocarbons (PAH). The HMPA samples also model the partitioning behavior of hydrophobic micelle-like structures of NOM.  相似文献   

6.
Recent progress in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) has provided extensive molecular mass data for complex natural organic matter (NOM). Structural information can be deduced solely from the molecular masses for ions with extreme molecular element ratios, in particular low H/C ratios, which are abundant in thermally altered NOM (e.g. black carbon). In this communication we propose a general aromaticity index (AI) and two threshold values as unequivocal criteria for the existence of either aromatic (AI > 0.5) or condensed aromatic structures (AI ≥ 0.67) in NOM. AI can be calculated from molecular formulae which are derived from exact molecular masses of naturally occurring compounds containing C, H, O, N, S and P, and is especially useful for substances with aromatic cores and few alkylations. In order to test the validity of our model index, AI is applied to FTICRMS data of a NOM deep‐water sample from the Weddell Sea (Antarctica), a fulvic acid standard, and an artificial dataset of all theoretically possible molecular formulae. For graphical evaluation a ternary plot is suggested for four‐dimensional data representation. The proposed aromaticity index is a step towards structural identification of NOM and the molecular identification of polyaromatic hydrocarbons in the environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Previous studies have shown that iodine (including 129I) can be strongly retained in organic-rich surface soils and sediment and that a large fraction of soluble iodine may be associated with dissolved humic material. Iodate (IO3) reacts with natural organic matter (NOM) producing either hypoiodous acid (HIO) or I2 as an intermediate. This intermediate is subsequently incorporated into the organic matter. Based on reactions of model compounds, we infer that iodine reacts with peat by aromatic substitution of hydrogen on phenolic constituents of the peat. Alternatively, the intermediate, HIO or I2, may be reduced to iodide (I). The pH (and temperature) dependence of the IO3 reaction (reduction) has been explored with sphagnum peat, alkali lignin, and several model compounds. The incorporation of iodine into NOM has been verified by pyrolysis gas chromatography/mass spectrometry (GC/MS). Model compound studies indicate that reduction of IO3 to HIO may result from reaction with hydroquinone (or semiquinone) moieties of the peat.  相似文献   

8.
Fixed bed adsorption experiments were performed using four granular activated carbon (GAC) columns designed by packing two size ranges of pulverized and sieved Filtrasorb 400 (d=0.5-0.59 and 1.0-1.19 mm) to two bed depths (L=10 and 20 cm), respectively. Continuous supplying of river water containing a lower content of natural organic matter (NOM) allowed investigation of the breakthrough of aqueous natural organic matrices assessed with lumped quality indices of total dissolved organic carbon (DOC) and ultraviolet absorbance at 260 nm (UV260). The capability of GAC columns in dealing with sudden rise in the load of influent NOM was also displayed by intermittently adding to the influent river water a peaty field groundwater that contained a higher content of NOM. Besides, assisted by the size-exclusion HPLC (SEHPLC), changes in the apparent molecular weight distribution of NOM along the bed depth of GAC columns were evaluated, and an important finding revealing relatively even adsorption for adsorbable NOM constituents within the entire molecular weight range of 1000-5200 g mol−1 as PSS (polystyrene sulfonates) detected for the river and groundwater NOM was obtained. Furthermore, using a previously proposed hypothetical multi-component approach incorporating the ideal adsorbed solution theory and a plug flow homogeneous surface diffusion model, the observed concentration profiles of the river water NOM were predicted.  相似文献   

9.
On the basis of the data on the distribution of various neutral solutes between sodium dodecyl sulfate (SDS) micelles and water, the control of separation selectivity in micellar electrokinetic chromatography (MEKC) by modification of the micellar phase with organic additives has been proposed and applied to the separation of simple model compounds. It was found that the distribution constants between the micelles and water (Kd,mc), which were determined by means of MEKC, of the solutes possessing hydrophilic functional groups are much larger than those between heptane and water (Kd,hep), whereas the Kd,mc values of the solutes possessing no hydropholic groups are comparable to their Kd,hep values. This indicates that the former solutes are preferentially solubilized in the Stern layer of the micelles and that the latter are located in the hydrocarbon core. In MEKC separations of aromatic compounds and metal acetylacetonates, considerable changes in separation selectivity were caused by the addition of compounds possessing both hydrophilic functional groups such as alcohols, phenol and ketones to the SDS micellar solution. The variations of the retention factors of the analytes could be explained in terms of saturation of the solubilization sites in the Stern layer with the modifiers, specific interaction of the modifiers with the analytes via hydrogen bonding in the micelles, and expansion of the core volume with the hydrocarbon parts of the modifiers. Such effects of the micellar modification could improve the resolution as well as the selectivity of MEKC separations.  相似文献   

10.
The topological substructural molecular design (TOSS-MODE) approach is used to describe the diamagnetic susceptibility of organic compounds. Two data sets composed of 233 aliphatic and 85 aromatic compounds were studied for which good linear correlations were found. The contributions of many different structural fragments and atomic groups were computed by the current approach. The predictive ability of the models developed was tested by using external prediction sets of compounds of different classes than those used in training. A quantitative model based on the current approach was developed to compute the diamagnetic susceptibility exaltation of aromatic compounds, which is exemplified by the study of polycyclic aromatic hydrocarbons. The rotatory power of organic compounds in a magnetic field was also described by the TOSS-MODE approach. Good linear correlations were obtained for this property in aliphatic and aromatic compounds. The predictive abilities of the models found were tested by external prediction sets for which good correlations between calculated and experimental values are found.  相似文献   

11.
Summary Adsorption properties of alkaline earth-metal modified silica beads were investigated by the gas-solid chromatography (GSC) method. Silica beads, obtained from colloidal material, were characterized by their surface areas, crystallinity and amount of sorbed alkaline earth cations. Retentions of several aliphatic, alicyclic, chlorinated, and aromatic compounds were measured in the temperature range from 373 to 453 K.The gas/solid partition coefficients, K5, and the related thermodynamic functions at zero surface coverage were determined. The results show that the specific surface areas of modified silica samples remain practically constant, whereas the modification leads to a decrease of silica surface heterogeneity.  相似文献   

12.
13.
Jahangk LM  Olsson L  Samuelson O 《Talanta》1975,22(12):973-978
Complex mixtures of aromatic compounds can be rapidly separated on anion-exchangers in the acetate form with acetic acid as eluent and determined automatically by recording the absorbance in the ultraviolet. Carboxylates are separated by ion-exchange. Hydrogen bonds between non-disso-ciated acids and the counter-ions influence the distribution coefficients. Hydrogen-bonding with the resin has a marked effect on the sorption of solutes containing phenolic protons. Intramolecular hydrogen-bonding depresses their sorption. Hydrophobic interactions have a predominant influence with hydrocarbons and with phenolic compounds containing non-polar aliphatic substituents. The relative importance of these interactions increases with a decreased ion-exchange capacity of the resin.  相似文献   

14.
The composition of the water-soluble organic matter from fine aerosols collected in a rural location during two different meteorological conditions (summer and autumn) was investigated by UV-vis, synchronous fluorescence (with Δλ = 20 nm), FT-IR and CPMAS-13C NMR spectroscopies. A seasonal variation in the concentration of total carbon, organic carbon and water-soluble organic carbon was confirmed, with higher values during the autumn and lower values during the summer season. The chemical characterisation of the water-soluble organic matter showed that both samples are dominated by a high content of aliphatic structures, carboxyl groups and aliphatic carbons single bonded to one oxygen or nitrogen atom. However, the autumn sample exhibits a higher aromatic content than the summer sample, plus signals due to carbons of phenol, ketones and methoxyl groups. These signals were attributed to lignin breakdown products which are likely to be released during wood combustion processes. The obtained results put into evidence the major contribution of biomass burning processes in domestic fireplaces during low temperature conditions into both the concentration and the bulk chemical properties of the WSOC from fine aerosols.  相似文献   

15.
The influence of natural organic matter on the screening of pharmaceuticals in water was determined by using high resolution liquid chromatography (HRLC) combined with full scan mass spectrometry (MS) techniques like time of flight (ToF) or Orbitrap MS. Water samples containing different amount of natural organic matter (NOM) and residues of a set of 11 pharmaceuticals were analyzed by using Exactive Orbitrap? LC-MS. The samples were screened for residues of pharmaceuticals belonging to different classes like benzimidazoles, macrolides, penicillins, quinolones, sulfonamides, tetracyclines, tranquillizers, non-steroidal anti-inflammatory drugs (NSAIDs), anti-epileptics and lipid regulators. The method characteristics were established over a concentration range of 0.1-500 μg L(-1). The 11 pharmaceuticals were added to two effluent and two influent water samples. The NOM concentration within the samples ranged from 2 to 8 mg L(-1) of dissolved organic carbon. The HRLC-Exactive Orbitrap? LC-MS system was set at a resolution of 50,000 (FWHM) and this selection was found sufficient for the detection of the list of pharmaceuticals. With this resolution setting, accurate mass measurements with errors below 2 ppm were found, despite of the NOM concentration of the different types of water samples. The linearities were acceptable with correlation coefficients greater than 0.95 for 30 of the 51 measured linearities. The limit of detection varies between 0.1 μg L(-1)and 100 μg L(-1). It was demonstrated that sensitivity could be affected by matrix constituents in both directions of signal reduction or enhancement. Finally it was concluded that with direct shoot method used (no sample pretreatment) all compounds, were detected but LODs depend on matrix-analyte-concentration combination. No direct relation was observed between NOM concentration and method characteristics. For accurate quantification the use of internal standards and/or sample clean-up is necessary. The direct shoot method is only applicable for qualitative screening purposes. The use of full scan MS makes it possible to search for unknown contaminants. With the use of adequate software and a database containing more than 50,000 entries a tool is available to search for unknowns.  相似文献   

16.
The International Atomic Energy Agency maintains a database of internationally available certified reference materials (CRM) of natural matrices. This database is periodically updated, and presently documents nearly 25,000 measurands in 1700 materials. The organic constituents are classified in five major groups of analytes – aliphatic and aromatic hydrocarbons (A), chlorinated hydrocarbons (B), pesticides (C), organometallic compounds (D) and other organic constituents (nutrients, etc.) (E). The matrices include natural materials such as body fluids, food products, soils, and sediments, terrestrial (e.g. plants), and anthropogenic products (e.g. dust, fly ash). These five organic groups of analytes encompass more than 2000 measurands for 420 different analytes in 230 materials. Of these measurands, 1682 (68%) are certified, and 768 (32%) are provided as informational values. Within each major group of analytes, measurands reported as informational values accounted for: A (35%); B (35%); C (26%); D (10%), and E (22%). The high proportion of informational values (i.e. non-certified values) for A, B, and C, compares well with a similar but undesirable situation faced in the nineteen-seventies in the inorganic area when simultaneous multielement techniques became available. In the case of D and E, it appears that mostly targeted analytes are measured, leading to a cohesive certification profile. Although the IAEA database is not equally comprehensive for all groups of analytes cited above, it can still serve as an useful indicator of the status of organic constituents in RMs.  相似文献   

17.
The International Atomic Energy Agency maintains a database of internationally available certified reference materials (CRM) of natural matrices. This database is periodically updated, and presently documents nearly 25,000 measurands in 1,700 materials. The organic constituents are classified in five major groups of analytes aliphatic and aromatic hydrocarbons (A), chlorinated hydrocarbons (B), pesticides (C), organometallic compounds (D) and other organic constituents (nutrients, etc.) (E). The matrices include natural materials such as body fluids, food products, soils, and sediments, terrestrial (e.g. plants), and anthropogenic products (e.g. dust, fly ash). These five organic groups of analytes encompass more than 2000 measurands for 420 different analytes in 230 materials. Of these measurands, 1,682 (68%) are certified, and 768 (32%) are provided as informational values. Within each major group of analytes, measurands reported as informational values accounted for: A (35%); B (35%); C (26%); D (10%), and E (22%). The high proportion of informational values (i.e. non-certified values) for A, B, and C, compares well with a similar but undesirable situation faced in the nineteen-seventies in the inorganic area when simultaneous multielement techniques became available. In the case of D and E, it appears that mostly targeted analytes are measured, leading to a cohesive certification profile. Although the IAEA database is not equally comprehensive for all groups of analytes cited above, it can still serve as an useful indicator of the status of organic constituents in RMs.  相似文献   

18.
Natural organic matter (NOM) is found in all surface, ground and soil waters. An increase in the amount of NOM has been observed over the past 10-20 years in raw water supplies in several areas, which has a significant effect on drinking water treatment. The presence of NOM causes many problems in drinking water and drinking water treatment processes, including (i) negative effect on water quality by causing colour, taste and odor problems, (ii) increased coagulant and disinfectant doses (which in turn results in increased sludge volumes and production of harmful disinfection by-products), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. NOM can be removed from drinking water by several treatment options, of which the most common and economically feasible processes are considered to be coagulation and flocculation followed by sedimentation/flotation and sand filtration. Most of the NOM can be removed by coagulation, although, the hydrophobic fraction and high molar mass compounds of NOM are removed more efficiently than hydrophilic fraction and the low molar mass compounds. Thus, enhanced and/or optimized coagulation, as well as new process alternatives for the better removal of NOM by coagulation process has been suggested. In the present work, an overview of the recent research dealing with coagulation and flocculation in the removal of NOM from drinking water is presented.  相似文献   

19.
A simple procedure is proposed for determining the concentration of maleimide and acrylate groups in organic compounds based on the addition of morpholine to the activated double bond by the Michael reaction, followed by the potentiometric titration of the reaction mixture with 1 M HCl in ethanol. The applicability of the method to N-substituted maleimides with aromatic, aliphatic, and oligomeric substituents, as well as to acrylates and acrylonitrile, is verified. It is demonstrated that maleimides and acrylates can be determined simultaneously.  相似文献   

20.
Abstract

Methods of determination of the column void volume with two homologous series of solutes (alkyl-substituted aromatic hydrocarbons and phenyl-substituted aliphatic alcohols) are considered in terms of correlation coefficients r of plots of log V'R against carbon number over the temperature range 10[ddot]-30[ddot]C. The homologous series methods provide self-consistent fits as well as temperature-invariant data for the aromatic hydrocarbons, but not for the alcohols, for which a mixed retention mechanism is said to obtain. A new graphical method of determining the best-fit value of VA is introduced that makes use of plots of r against assumed VA. In contrast to work reported elsewhere by others, each of the series of compounds studied in this work clearly exhibits a maximum. Those for the aromatic hydrocarbons are temperature-invariant; however, this is not so for the alcohols, which is taken as evidence of thermal and/or multiple sorption interactions of these solutes with the stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号