首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Target-based virtual screening is increasingly used to generate leads for targets for which high quality three-dimensional (3D) structures are available. To allow large molecular databases to be screened rapidly, a tiered scoring scheme is often employed whereby a simple scoring function is used as a fast filter of the entire database and a more rigorous and time-consuming scoring function is used to rescore the top hits to produce the final list of ranked compounds. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches are currently thought to be quite effective at incorporating implicit solvation into the estimation of ligand binding free energies. In this paper, the ability of a high-throughput MM-PBSA rescoring function to discriminate between correct and incorrect docking poses is investigated in detail. Various initial scoring functions are used to generate docked poses for a subset of the CCDC/Astex test set and to dock one set of actives/inactives from the DUD data set. The effectiveness of each of these initial scoring functions is discussed. Overall, the ability of the MM-PBSA rescoring function to (i) regenerate the set of X-ray complexes when docking the bound conformation of the ligand, (ii) regenerate the X-ray complexes when docking conformationally expanded databases for each ligand which include "conformation decoys" of the ligand, and (iii) enrich known actives in a virtual screen for the mineralocorticoid receptor in the presence of "ligand decoys" is assessed. While a pharmacophore-based molecular docking approach, PhDock, is used to carry out the docking, the results are expected to be general to use with any docking method.  相似文献   

2.
In today's world of high-throughput in silico screening, the development of virtual screening methodologies to prioritize small molecules as new chemical entities (NCEs) for synthesis is of current interest. Among several approaches to virtual screening, structure-based virtual screening has been considered the most effective. However the problems associated with the ranking of potential solutions in terms of scoring functions remains one of the major bottlenecks in structure-based virtual screening technology. It has been suggested that scoring functions may be used as filters for distinguishing binders from nonbinders instead of accurately predicting their binding free energies. Subsequently, several improvements have been made in this area, which include the use of multiple rather than single scoring functions and application of either consensus or multivariate statistical methods or both to improve the discrimination between binders and nonbinders. In view of it, the discriminative ability (distinguishing binders from nonbinders) of binary QSAR models derived using LUDI and MOE scoring functions has been compared with the models derived by Jacobbsson et al. on five data sets viz. estrogen receptor alphamimics (ERalpha_mimics), estrogen receptor alphatoxins (ERalpha_toxins), matrix metalloprotease 3 inhibitors (MMP-3), factor Xa inhibitors (fXa), and acetylcholine esterase inhibitors (AChE). The overall analyses reveal that binary QSAR is comparable to the PLS discriminant analysis, rule-based, and Bayesian classification methods used by Jacobsson et al. Further the scoring functions implemented in LUDI and MOE can score a wide range of protein-ligand interactions and are comparable to the scoring functions implemented in ICM and Cscore. Thus the binary QSAR models derived using LUDI and MOE scoring functions may be useful as a preliminary screening layer in a multilayered virtual screening paradigm.  相似文献   

3.
A recently introduced new methodology based on ultrashort (50-100 ps) molecular dynamics simulations with a quantum-refined force-field (QRFF-MD) is here evaluated in its ability both to predict protein-ligand binding affinities and to discriminate active compounds from inactive ones. Physically based scoring functions are derived from this approach, and their performance is compared to that of several standard knowledge-based scoring functions. About 40 inhibitors of cyclin-dependent kinase 2 (CDK2) representing a broad chemical diversity were considered. The QRFF-MD method achieves a correlation coefficient, R(2), of 0.55, which is significantly better than that obtained by a number of traditional approaches in virtual screening but only slightly better than that obtained by consensus scoring (R(2) = 0.50). Compounds from the Available Chemical Directory, along with the known active compounds, were docked into the ATP binding site of CDK2 using the program Glide, and the 650 ligands from the top scored poses were considered for a QRFF-MD analysis. Combined with structural information extracted from the simulations, the QRFF-MD methodology results in similar enrichment of known actives compared to consensus scoring. Moreover, a new scoring function is introduced that combines a QRFF-MD based scoring function with consensus scoring, which results in substantial improvement on the enrichment profile.  相似文献   

4.
In recent years, many virtual screening (VS) tools have been developed that employ different molecular representations and have different speed and accuracy characteristics. In this paper, we compare ten popular ligand-based VS tools using the publicly available Directory of Useful Decoys (DUD) data set comprising over 100?000 compounds distributed across 40 protein targets. The DUD was developed initially to evaluate docking algorithms, but our results from an operational correlation analysis show that it is also well suited for comparing ligand-based VS tools. Although it is conventional wisdom that 3D molecular shape is an important determinant of biological activity, our results based on permutational significance tests of several commonly used VS metrics show that the 2D fingerprint-based methods generally give better VS performance than the 3D shape-based approaches for surprisingly many of the DUD targets. To help understand this finding, we have analyzed the nature of the scoring functions used and the composition of the DUD data set itself. We propose that to improve the VS performance of current 3D methods, it will be necessary to devise screening queries that can represent multiple possible conformations and which can exploit knowledge of known actives that span multiple scaffold families.  相似文献   

5.
It has been reported recently that consensus scoring, which combines multiple scoring functions in binding affinity estimation, leads to higher hit-rates in virtual library screening studies. This method seems quite independent to the target receptor, the docking program, or even the scoring functions under investigation. Here we present an idealized computer experiment to explore how consensus scoring works. A hypothetical set of 5000 compounds is used to represent a chemical library under screening. The binding affinities of all its member compounds are assigned by mimicking a real situation. Based on the assumption that the error of a scoring function is a random number in a normal distribution, the predicted binding affinities were generated by adding such a random number to the "observed" binding affinities. The relationship between the hit-rates and the number of scoring functions employed in scoring was then investigated. The performance of several typical ranking strategies for a consensus scoring procedure was also explored. Our results demonstrate that consensus scoring outperforms any single scoring for a simple statistical reason: the mean value of repeated samplings tends to be closer to the true value. Our results also suggest that a moderate number of scoring functions, three or four, are sufficient for the purpose of consensus scoring. As for the ranking strategy, both the rank-by-number and the rank-by-rank strategy work more effectively than the rank-by-vote strategy.  相似文献   

6.
Shape-based methods for aligning and scoring ligands have proven to be valuable in the field of computer-aided drug design. Here, we describe a new shape-based flexible ligand superposition and virtual screening method, Phase Shape, which is shown to rapidly produce accurate 3D ligand alignments and efficiently enrich actives in virtual screening. We describe the methodology, which is based on the principle of atom distribution triplets to rapidly define trial alignments, followed by refinement of top alignments to maximize the volume overlap. The method can be run in a shape-only mode or it can include atom types or pharmacophore feature encoding, the latter consistently producing the best results for database screening. We apply Phase Shape to flexibly align molecules that bind to the same target and show that the method consistently produces correct alignments when compared with crystal structures. We then illustrate the effectiveness of the method for identifying active compounds in virtual screening of eleven diverse targets. Multiple parameters are explored, including atom typing, query structure conformation, and the database conformer generation protocol. We show that Phase Shape performs well in database screening calculations when compared with other shape-based methods using a common set of actives and decoys from the literature.  相似文献   

7.
The pharmacophore concept is of central importance in computer-aided drug design (CADD) mainly because of its successful application in medicinal chemistry and, in particular, high-throughput virtual screening (HTVS). The simplicity of the pharmacophore definition enables the complexity of molecular interactions between ligand and receptor to be reduced to a handful set of features. With many pharmacophore screening softwares available, it is of the utmost interest to explore the behavior of these tools when applied to different biological systems. In this work, we present a comparative analysis of eight pharmacophore screening algorithms (Catalyst, Unity, LigandScout, Phase, Pharao, MOE, Pharmer, and POT) for their use in typical HTVS campaigns against four different biological targets by using default settings. The results herein presented show how the performance of each pharmacophore screening tool might be specifically related to factors such as the characteristics of the binding pocket, the use of specific pharmacophore features, and the use of these techniques in specific steps/contexts of the drug discovery pipeline. Algorithms with rmsd-based scoring functions are able to predict more compound poses correctly as overlay-based scoring functions. However, the ratio of correctly predicted compound poses versus incorrectly predicted poses is better for overlay-based scoring functions that also ensure better performances in compound library enrichments. While the ensemble of these observations can be used to choose the most appropriate class of algorithm for specific virtual screening projects, we remarked that pharmacophore algorithms are often equally good, and in this respect, we also analyzed how pharmacophore algorithms can be combined together in order to increase the success of hit compound identification. This study provides a valuable benchmark set for further developments in the field of pharmacophore search algorithms, e.g., by using pose predictions and compound library enrichment criteria.  相似文献   

8.
9.
We developed a novel approach called SHAFTS (SHApe-FeaTure Similarity) for 3D molecular similarity calculation and ligand-based virtual screening. SHAFTS adopts a hybrid similarity metric combined with molecular shape and colored (labeled) chemistry groups annotated by pharmacophore features for 3D similarity calculation and ranking, which is designed to integrate the strength of pharmacophore matching and volumetric overlay approaches. A feature triplet hashing method is used for fast molecular alignment poses enumeration, and the optimal superposition between the target and the query molecules can be prioritized by calculating corresponding "hybrid similarities". SHAFTS is suitable for large-scale virtual screening with single or multiple bioactive compounds as the query "templates" regardless of whether corresponding experimentally determined conformations are available. Two public test sets (DUD and Jain's sets) including active and decoy molecules from a panel of useful drug targets were adopted to evaluate the virtual screening performance. SHAFTS outperformed several other widely used virtual screening methods in terms of enrichment of known active compounds as well as novel chemotypes, thereby indicating its robustness in hit compounds identification and potential of scaffold hopping in virtual screening.  相似文献   

10.
This study addresses a number of topical issues around the use of protein-ligand docking in virtual screening. We show that, for the validation of such methods, it is key to use focused libraries (containing compounds with one-dimensional properties, similar to the actives), rather than "random" or "drug-like" libraries to test the actives against. We also show that, to obtain good enrichments, the docking program needs to produce reliable binding modes. We demonstrate how pharmacophores can be used to guide the dockings and improve enrichments, and we compare the performance of three consensus-ranking protocols against ranking based on individual scoring functions. Finally, we show that protein-ligand docking can be an effective aid in the screening for weak, fragment-like binders, which has rapidly become a popular strategy for hit identification. All results presented are based on carefully constructed virtual screening experiments against four targets, using the protein-ligand docking program GOLD.  相似文献   

11.
MOTIVATION: Virtual screening of molecular compound libraries is a potentially powerful and inexpensive method for the discovery of novel lead compounds for drug development. The major weakness of virtual screening-the inability to consistently identify true positives (leads)-is likely due to our incomplete understanding of the chemistry involved in ligand binding and the subsequently imprecise scoring algorithms. It has been demonstrated that combining multiple scoring functions (consensus scoring) improves the enrichment of true positives. Previous efforts at consensus scoring have largely focused on empirical results, but they have yet to provide a theoretical analysis that gives insight into real features of combinations and data fusion for virtual screening. RESULTS: We demonstrate that combining multiple scoring functions improves the enrichment of true positives only if (a) each of the individual scoring functions has relatively high performance and (b) the individual scoring functions are distinctive. Notably, these two prediction variables are previously established criteria for the performance of data fusion approaches using either rank or score combinations. This work, thus, establishes a potential theoretical basis for the probable success of data fusion approaches to improve yields in in silico screening experiments. Furthermore, it is similarly established that the second criterion (b) can, in at least some cases, be functionally defined as the area between the rank versus score plots generated by the two (or more) algorithms. Because rank-score plots are independent of the performance of the individual scoring function, this establishes a second theoretically defined approach to determining the likely success of combining data from different predictive algorithms. This approach is, thus, useful in practical settings in the virtual screening process when the performance of at least two individual scoring functions (such as in criterion a) can be estimated as having a high likelihood of having high performance, even if no training sets are available. We provide initial validation of this theoretical approach using data from five scoring systems with two evolutionary docking algorithms on four targets, thymidine kinase, human dihydrofolate reductase, and estrogen receptors of antagonists and agonists. Our procedure is computationally efficient, able to adapt to different situations, and scalable to a large number of compounds as well as to a greater number of combinations. Results of the experiment show a fairly significant improvement (vs single algorithms) in several measures of scoring quality, specifically "goodness-of-hit" scores, false positive rates, and "enrichment". This approach (available online at http://gemdock.life. nctu.edu.tw/dock/download.php) has practical utility for cases where the basic tools are known or believed to be generally applicable, but where specific training sets are absent.  相似文献   

12.
Virtual screening has become a popular tool to identify novel leads in the early phases of drug discovery. A variety of docking and scoring methods used in virtual screening have been the subject of active research in an effort to gauge limitations and articulate best practices. However, how to best utilize different scoring functions and various crystal structures, when available, is not yet well understood. In this work we use multiple crystal structures of PI3 K-γ in both prospective and retrospective virtual screening experiments. Both Glide SP scoring and Prime MM-GBSA rescoring are utilized in the prospective and retrospective virtual screens, and consensus scoring is investigated in the retrospective virtual screening experiments. The results show that each of the different crystal structures that was used, samples a different chemical space, i.e. different chemotypes are prioritized by each structure. In addition, the different (re)scoring functions prioritize different chemotypes as well. Somewhat surprisingly, the Prime MM-GBSA scoring function generally gives lower enrichments than Glide SP. Finally we investigate the impact of different ligand preparation protocols on virtual screening enrichment factors. In summary, different crystal structures and different scoring functions are complementary to each other and allow for a wider variety of chemotypes to be considered for experimental follow-up.  相似文献   

13.
14.
This paper introduces a new consensus scoring approach for merging the results of different virtual screening methods based on conditional probabilities. The technique is experimentally evaluated using several ligand-based virtual screening methods and compared to two variations of the established Sum-rank fusion method where it performs as well or better than the Sum-rank methods. Our experiments confirm that consensus scoring increases the number of active compounds retrieved with respect to the best individual methods on average.  相似文献   

15.
16.
The combination of 3D pharmacophore fingerprints and the support vector machine classification algorithm has been used to generate robust models that are able to classify compounds as active or inactive in a number of G-protein-coupled receptor assays. The models have been tested against progressively more challenging validation sets where steps are taken to ensure that compounds in the validation set are chemically and structurally distinct from the training set. In the most challenging example, we simulate a lead-hopping experiment by excluding an entire class of compounds (defined by a core substructure) from the training set. The left-out active compounds comprised approximately 40% of the actives. The model trained on the remaining compounds is able to recall 75% of the actives from the "new" lead series while correctly classifying >99% of the 5000 inactives included in the validation set.  相似文献   

17.
The evaluation of ligand conformations is a crucial aspect of structure-based virtual screening, and scoring functions play significant roles in it. While consensus scoring (CS) generally improves enrichment by compensating for the deficiencies of each scoring function, the strategy of how individual scoring functions are selected remains a challenging task when few known active compounds are available. To address this problem, we propose feature selection-based consensus scoring (FSCS), which performs supervised feature selection with docked native ligand conformations to select complementary scoring functions. We evaluated the enrichments of five scoring functions (F-Score, D-Score, PMF, G-Score, and ChemScore), FSCS, and RCS (rank-by-rank consensus scoring) for four different target proteins: acetylcholine esterase (AChE), thrombin (thrombin), phosphodiesterase 5 (PDE5), and peroxisome proliferator-activated receptor gamma (PPARgamma). The results indicated that FSCS was able to select the complementary scoring functions and enhance ligand enrichments and that it outperformed RCS and the individual scoring functions for all target proteins. They also indicated that the performances of the single scoring functions were strongly dependent on the target protein. An especially favorable result with implications for practical drug screening is that FSCS performs well even if only one 3D structure of the protein-ligand complex is known. Moreover, we found that one can infer which scoring functions significantly enrich active compounds by using feature selection before actual docking and that the selected scoring functions are complementary.  相似文献   

18.
In order to identify novel chemical classes of factor Xa inhibitors, five scoring functions (FlexX, DOCK, GOLD, ChemScore and PMF) were engaged to evaluate the multiple docking poses generated by FlexX. The compound collection was composed of confirmed potent factor Xa inhibitors and a subset of the LeadQuest screening compound library. Except for PMF the other four scoring functions succeeded in reproducing the crystal complex (PDB code: 1FAX). During virtual screening the highest hit rate (80%) was demonstrated by FlexX at an energy cutoff of -40 kJ/mol, which is about 40-fold over random screening (2.06%). Limited results suggest that presenting more poses of a single molecule to the scoring functions could deteriorate their enrichment factors. A series of promising scaffolds with favorable binding scores was retrieved from LeadQuest. Consensus scoring by pair-wise intersection failed to enrich the hit rate yielded by single scorings (i.e. FlexX). We note that reported successes of consensus scoring in hit rate enrichment could be artificial because their comparisons were based on a selected subset of single scoring and a markedly reduced subset of double or triple scoring. The findings presented in this report are based upon a single biological system and support further studies.  相似文献   

19.
The SAMPL challenges provide an ideal opportunity for unbiased evaluation and comparison of different approaches used in computational drug design. During the fourth round of this SAMPL challenge, we participated in the virtual screening and binding pose prediction on inhibitors targeting the HIV-1 integrase enzyme. For virtual screening, we used well known and widely used in silico methods combined with personal in cerebro insights and experience. Regular docking only performed slightly better than random selection, but the performance was significantly improved upon incorporation of additional filters based on pharmacophore queries and electrostatic similarities. The best performance was achieved when logical selection was added. For the pose prediction, we utilized a similar consensus approach that amalgamated the results of the Glide-XP docking with structural knowledge and rescoring. The pose prediction results revealed that docking displayed reasonable performance in predicting the binding poses. However, prediction performance can be improved utilizing scientific experience and rescoring approaches. In both the virtual screening and pose prediction challenges, the top performance was achieved by our approaches. Here we describe the methods and strategies used in our approaches and discuss the rationale of their performances.  相似文献   

20.
Conventional docking-based virtual screening (VS) of chemical databases is based on the ranking of compounds according to the values retrieved by a scoring function (typically, the binding affinity estimation). However, using the most suitable scoring function for each kind of receptor pocket is not always an effective process to rank compounds, and sometimes neither to distinguish between correct binding modes from incorrect ones. To improve actives from decoys selection, here we propose a three-step VS protocol, which includes the conventional docking step, a pharmacophore postfilter step, and a similarity search postprocess. This VS protocol is retrospectively applied to VEGFR-2 (Kdr-kinase) inhibitors. The resulting docking poses calculated using the Alpha HB scoring function implemented in MOE are postfiltered according to defined pharmacophore interactions (structure based). The selected poses are again ranked according to their molecular similarity (MACCS fingerprint) to the cognate ligand. Results show that both the overall and early VS performance improve the application of this protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号