首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The intrinsic gas-phase stability of the IrCl(6)(3-) trianion and its microsolvated clusters, IrCl(6)(3-).(H(2)O)(n) n = 1-10, have been investigated using density functional theory (DFT) calculations. Although IrCl(6)(3-) is known to exist as a stable complex ion in bulk solutions, our calculations indicate that the bare trianion is metastable with respect to decay via both electron detachment and ionic fragmentation. To estimate the lifetime of IrCl(6)(3-), we have computed the electron tunneling probability using an adaption of the Wentzel-Kramer-Brillouin theory and predict that the trianion will decay spontaneously via electron tunneling on a time scale of 2.4 x 10(-13) s. The global minimum structure for IrCl(6)(3-).H(2)O was found to contain a bifurcated hydrogen bond, whereas for IrCl(6)(3-).(H(2)O)(2), two low energy minima were identified; one involving two bifurcated water-ion hydrogen bonds and a second combining a bifurcated hydrogen bond with a water-water hydrogen bond. Clusters based on each of these structural motifs were obtained for all of the n = 3-10 systems, and the effect of solvation on the possible decay pathways was explored. The calculations reveal that solvation stabilizes IrCl(6)(3-) with respect to both electron detachment decay and ionic fragmentation, with the magnitude of the repulsive Coulomb barrier for ionic fragmentation increasing smoothly with sequential solvation. This study is the first to compare the propensity for electron detachment versus ionic fragmentation decay for a sequentially solvated triply charged anion.  相似文献   

2.
Photoion yields from gaseous fullerenes, C(60) and C(70), for production of singly and doubly charged ions are measured by mass spectrometry combined with tunable synchrotron radiation at hnu=25-150 eV. Since the signal of triply or highly charged ions is very weak, the total photoionization yield curve can be estimated from the sum of the yields of the singly and doubly charged ions. A distinct feature appears in the resultant curve of C(60) which is absent in the calculated total photoabsorption cross section previously reported. This difference is attributed to C(60) (2+) ions chiefly produced by spectator Auger ionization of the shape resonance states followed by tunneling of the trapped electron or by cascade Auger ionization. Ratios between the yields of doubly and singly charged ions for C(60) and C(70) are larger than unity at hnu>50 eV. These ratios are quite different from those reported in the experiments using electron impact ionization.  相似文献   

3.
We present ab initio calculations of the repulsive Coulomb barrier for several geometrically stable isomers of the BeC(2-)(4) dianion. We describe how the deformation of certain isomers can account for the experimental Coulomb explosion images of the dianion. For the most stable linear isomer, C(-)(2)BeC(-)(2), we examined the electron tunneling process along the dissociation path to obtain C(-)(2) plus BeC(-)(2). We found the crossing point for autodetachment to be R(c)(dis)= 3.25 A. R(dis) is the bond length between C(-)(2) and BeC(-)(2); at this point, the electron tunneling energy is equal to the maximum of the repulsive Coulomb barrier. In the framework of the Wenzel-Kramer-Brioullin theory, the electron-loss lifetime of the metastable C(-)(2)BeC(-)(2) dianion at the equilibrium geometry, R(dis) = 1.64 A, was estimated to be about 5 ms. This lower limit is in agreement with the experimental results in which the BeC(2-)(4) dianion has a lifetime much longer than 5 micros.  相似文献   

4.
C(120)O comprises two C(60) cages linked by a furan ring and is formed by reactions of C(60)O and C(60). We have produced doubly charged anions of this fullerene dimer (C(120)O(2-)) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several photon energies. The second electron affinity of C(120)O was measured to be 1.02+/-0.03 eV and the intramolecular Coulomb repulsion was estimated to be about 0.8 eV in C(120)O(2-) on the basis of the observed repulsive Coulomb barrier. A low-lying excited state ((2)B(1)) was also observed for C(120)O(-) at 0.09 eV above the ground state ((2)A(1)). The C(120)O(2-) dianion can be viewed as a single electron on each C(60) ball very weakly coupled. Theoretical calculations showed that the singlet and triplet states of C(120)O(2-) are nearly degenerate and can both be present in the experiment. The computed electron binding energies and excitation energies, as well as Franck-Condon factors, are used to help interpret the photoelectron spectra. A C-C bond-cleaved isomer, C(60)-O-C(60) (2-), was also observed with a higher electron binding energy of 1.54 eV.  相似文献   

5.
Vibronic states are observed in single C(60) and C(70) molecules by scanning tunneling microscopy. When single fullerene molecules are adsorbed on a thin layer of Al(2)O(3) grown on a NiAl(110) substrate, equally spaced features are observed in the differential conductance (dI/dV), which are clearly resolved in d(2)I/dV(2) spectra. These features are attributed to the vibronic states of the molecule. The vibronic progressions are sensitive to the molecular orientations and can have different spacings in different electronic bands of the same molecule. For C(60,) these vibronic states are associated with the intramolecular A(g) and H(g) vibrational modes. Vibronic states are not resolved in molecules adsorbed on the metal surface. However, inelastic electron tunneling spectroscopy exhibits a vibrational mode at 64 meV for C(60) and 61 meV for C(70) adsorbed on NiAl(110).  相似文献   

6.
New ionic complexes of fullerenes C(60) and C(70) with decamethylchromocene Cp*(2)Cr.C60.(C(6)H(4)Cl(2))(2) (1), Cp*(2)Cr.C60.(C(6)H(6))(2) (2); the multicomponent complex of (Cs(+))(C70-) with cyclotriveratrylene CTV.(Cs)(2).(C70)(2).(DMF)(7).(C(6)H(6))(0.75) (3); bis(benzene)chromium Cr(C(6)H(6))(2).C60.(C(6)H(4)Cl(2))(0.7) (4), Cr(C(6)H(6))(2).C60.C(6)H(5)CN (5), Cr(C(6)H(6))(2).C70.C(6)H(4)Cl(2) (6), Cr(C(6)H(6))(2).C60 (7); cobaltocene Cp(2)Co.C60.C(6)H(4)Cl(2) (8), Cp(2)Co.C70.(C(6)H(4)Cl(2))(0.5) (9); and cesium Cs.C70.(DMF)(5) (10) have been obtained. The complexes have been characterized by the elemental analysis, IR-, UV-vis-NIR spectroscopy, EPR and SQUID measurements. It is shown that C(60)(.-) exists as a single-bonded diamagnetic (C60-)2 dimer in 1, 2, 4, 5, and 8 at low temperatures (1.9-250 K). The dimers dissociate above 160-250 K depending on donor and solvent molecules involved in the complex. C60(.-) dimerizes reversibly and shows a small hysteresis (<2 K) at slow cooling and heating rates. The single-bonded diamagnetic (C70-)2 dimers are also formed in 6, 9, and 10 and begin to dissociate only above 250-360 K. The IR and UV-vis-NIR spectra of sigma-bonded negatively charged fullerenes are presented.  相似文献   

7.
A constrained derivative, cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid, cis-W3, was designed to test the rotamer model of tryptophan photophysics. The conformational constraint enforces a single chi(1) conformation, analogous to the chi(1) = 60 degrees rotamer of tryptophan. The side-chain torsion angles in the X-ray structure of cis-W3 were chi(1) = 58.5 degrees and chi(2) = -88.7 degrees. Molecular mechanics calculations suggested two chi(2) rotamers for cis-W3 in solution, -100 degrees and 80 degrees, analogous to the chi(2) = +/-90 degrees rotamers of tryptophan. The fluorescence decay of the cis-W3 zwitterion was biexponential with lifetimes of 3.1 and 0.3 ns at 25 degrees C. The relative amplitudes of the lifetime components match the chi(2) rotamer populations predicted by molecular mechanics. The longer lifetime represents the major chi(2) = -100 degrees rotamer. The shorter lifetime represents the minor chi(2) = 80 degrees rotamer having the ammonium group closer to C4 of the indole ring (labeled C5 in the cis-W3 X-ray structure). Intramolecular excited-state proton transfer occurs at indole C4 in the tryptophan zwitterion (Saito, I.; Sugiyama, H.; Yamamoto, A.; Muramatsu, S.; Matsuura,T. J. Am. Chem. Soc. 1984, 106, 4286-4287). Photochemical isotope exchange experiments showed that H-D exchange occurs exclusively at C5 in the cis-W3 zwitterion, consistent with the presence of the chi(2) = 80 degrees rotamer in solution. The rates of two nonradiative processes, excited-state proton and electron transfer, were measured for individual chi(2) rotamers. The excited-state proton-transfer rate was determined from H-D exchange and fluorescence lifetime data. The excited-state electron-transfer rate was determined from the temperature dependence of the fluorescence lifetime. The major quenching process in the -100 degrees rotamer is electron transfer from the excited indole to carboxylate. Electron transfer also occurs in the 80 degrees rotamer, but the major quenching process is intramolecular proton transfer. Both quenching processes are suppressed by deprotonation of the amino group. The results for cis-W3 provide compelling evidence that the complex fluorescence decay of the tryptophan zwitterion originates in ground-state heterogeneity with the different lifetimes primarily reflecting different intramolecular excited-state proton- and electron-transfer rates in various rotamers.  相似文献   

8.
Low-temperature neutron scattering spectra of diammonium dodecahydro-closo-dodecaborate [(NH(4))(2)B(12)H(12)] reveal two NH(4)(+) rotational tunneling peaks (e.g., 18.5 μeV and 37 μeV at 4 K), consistent with the tetrahedral symmetry and environment of the cations. The tunneling peaks persist between 4 K and 40 K. An estimate was made for the tunnel splitting of the first NH(4)(+) librational state from a fit of the observed ground-state tunnel splitting as a function of temperature. At temperatures of 50 K-70 K, classical neutron quasi-elastic scattering appears to dominate the spectra and is attributed to NH(4)(+) cation jump reorientation about the four C(3) axes defined by the N-H bonds. A reorientational activation energy of 8.1 ± 0.6 meV (0.79 ± 0.06 kJ/mol) is determined from the behavior of the quasi-elastic linewidths in this temperature regime. This activation energy is in accord with a change in NH(4)(+) dynamical behavior above 70 K. A low-temperature inelastic neutron scattering feature at 7.8 meV is assigned to a NH(4)(+) librational mode. At increased temperatures, this feature drops in intensity, having shifted entirely to higher energies by 200 K, suggesting the onset of quasi-free NH(4)(+) rotation. This is consistent with neutron-diffraction-based model refinements, which derive very large thermal ellipsoids for the ammonium-ion hydrogen atoms at room temperature in the direction of reorientation.  相似文献   

9.
The C(60) complex with decamethylcobaltocene, (Cp(2)Co)(2)C(60)(C(6)H(4)Cl(2), C(6)H(5)CN)(2) (1) (C(6)H(4)Cl(2) = 1,2-dichlorobenzene; C(6)H(5)CN = benzonitrile), has been obtained as single crystals by the diffusion method. The IR and UV-vis-NIR spectra show the presence of the C(60)(2)(-) and the Cp(2)Co(+) ions, which form a three-dimensional framework with channels accommodating solvent molecules. EPR and SQUID measurements show that C(60)(2)(-) has a diamagnetic singlet (S = 0) state in the 2-140 K range. The appearance of a broad EPR signal and the increase in magnetic susceptibility of 1 above 140 K are assigned to a thermal population of a close lying triplet (S = 1) state. The singlet-triplet energy gap for C(60)(2)(-) in solid 1 is estimated to be 730+/-10 cm(-)(1).  相似文献   

10.
The lifetimes of long-lived C2Cl4(-) ions formed by Rydberg electron transfer in K(np)/C2Cl4 collisions are investigated using a Penning ion trap. Measurements at high n, n > or = 30, show that low-energy electron attachment to C2Cl4 leads to the production of C2Cl4(-) ions with a broad range of lifetimes that extends up to at least 1 ms. This is attributed to capture by molecules in different initial vibrational states. At low n, internal-to-translational energy transfer in postattachment interactions between the product K+ and C2Cl4(-) ions becomes important and leads to a substantial increase in ion lifetimes.  相似文献   

11.
Photodetachment photoelectron spectroscopy was used to investigate the electronic structure of the doubly charged complexes [MIVO(mnt)2]2- (M = Mo, W; mnt = 1,2-dicyanoethenedithiolato). These dianions are stable in the gas phase and are minimal models for the active sites of the dimethyl sulfoxide reductase family of molybdenum enzymes and of related tungsten enzymes. Adiabatic and vertical electron binding energies for both species were measured, providing detailed information about molecular orbital energy levels of the parent dianions as well as the ground and excited states of the product anions [MVO(mnt)2]-. Density functional theory calculations were used to assist assignment of the detachment features. Differences in energy between these features provided the energies of ligand-to-metal charge-transfer transitions from S(pi) and S(sigma) molecular orbitals to the singly occupied metal-based orbital of the products [MVO(mnt)2]-. These unique data for the M(V) species were obtained at the C(2)(v)() geometry of the parent M(IV) dianions. However, theoretical calculations and available condensed phase data suggested that a geometry featuring differentially folded dithiolene ligands (Cs point symmetry) was slightly lower in energy. The driving force for ligand folding is a favorable covalent interaction between the singly occupied metal-based molecular orbital (a1 in C2v) point symmetry; highest occupied molecular orbital (HOMO)) and the least stable of the occupied sulfur-based molecular orbitals (b1 in C2v point symmetry, HOMO-1) that is only possible upon reduction to the lower symmetry. This ligand folding induces a large increase in the intensity predicted for the a' S(pi) --> a' dx2 - y2 charge-transfer transition originating from the HOMO-2 of [MVO(mnt)2](-) under Cs point symmetry. Electronic absorption spectra are available for the related species [MoVO(bdt)2]- (bdt = 1,2-benzenedithiolato) and for the oxidized form of dimethyl sulfoxide reductase. The intense absorptions at approximately 1.7 eV have been assigned previously to S(sigma) --> Mo transitions, assuming C2v geometry. The present work indicates that the alternative a' S(pi) --> a' dx2 - y2 of Cs geometry must be considered. Overall, this study confirms that the electronic structure of the M-dithiolene units are exquisitely sensitive to dithiolene ligand folding, reinforcing the proposal that these units are tunable conduits for electron transfer in enzyme systems.  相似文献   

12.
CO, O(2), and H(2) adsorption on a clean W(2)C(0001)√13×√13 R ± 13.9° reconstructed surface at room temperature (RT) were investigated using high-resolution electron energy loss spectroscopy (HREELS). The W(2)C(0001) adsorbs CO molecularly and adsorbs O(2) dissociatively, but does not adsorb H(2) at RT. In the CO adsorption system, two C-O stretching (antisymmetric CCO stretching) modes were found at 242.3 meV (1954 cm(-1)) and at 253.0 meV (2041 cm(-1)). The low-frequency site is occupied at first with subsequent conversion to the high-frequency site with increasing coverage. Additionally, a small peak was apparent at 104.5 meV (843 cm(-1)), and a middle peak at 50-51 meV (400-410 cm(-1)), which are assignable to a symmetric stretching mode and a hindered translational mode, respectively, of a CCO (ketenylidene) species. These observations are consistent with the CO adsorption model on top of the surface carbon. For oxygen adsorption, two adsorption states were found at 65.2-68.1 meV (526-549 cm(-1)) and 73.6 meV (594 cm(-1)): typical frequencies to oxygen adsorption on metal surfaces. Results suggest that atomic oxygen adsorption occurred on a threefold hollow site of the second W layer.  相似文献   

13.
We report laser photoelectron spectra of the doubly negatively charged fullerenes C(76) (2-), C(78) (2-), and C(84) (2-) at 2.33, 3.49, and 4.66 eV photon energy. From these spectra, second electron affinities and vertical detachment energies, as well as estimates for the repulsive Coulomb barriers are obtained. These results are discussed in the context of electrostatic models. They reveal that fullerenes are similar to conducting spheres, with electronic properties scaling with their size. The experimental spectra are compared with the accessible excited states of the respective singly charged product ions calculated in the framework of time dependent density functional theory.  相似文献   

14.
Lee TB  McKee ML 《Inorganic chemistry》2011,50(22):11412-11422
The dissolution Gibbs free energies (ΔG°(diss)) of salts (M(2)X(1)) have been calculated by density functional theory (DFT) with Conductor-like Polarizable Continuum Model (CPCM) solvation modeling. The absolute solvation free energies of the alkali metal cations (ΔG(solv)(M(+))) come from the literature, which coincide well with half reduction potential versus SHE data. For solvation free energies of dianions (ΔG(solv)(X(2-))), four different DFT functionals (B3LYP, PBE, BVP86, and M05-2X) were applied with three different sets of atomic radii (UFF, UAKS, and Pauling). Lattice free energies (ΔG(latt)) of salts were determined by three different approaches: (1) volumetric, (2) a cohesive Gibbs free energy (ΔG(coh)) plus gaseous dissociation free energy (ΔG(gas)), and (3) the Born-Haber cycle. The G4 level of theory, electron propagator theory, and stabilization by dielectric medium were used to calculate the second electron affinity to form the dianions CO(3)(2-) and SO(4)(2-). Only the M05-2X/Pauling combination with the three different methods for estimating ΔG(latt) yields the expected negative dissolution free energies (ΔG°(diss)) of M(2)SO(4). Salts with large dianions like M(2)C(8)H(8) and M(2)B(12)H(12) reveal the limitation of using static radii in the volumetric estimation of lattice energies. The value of ΔE(coh) was very dependent on the DFT functional used.  相似文献   

15.
The dynamics of charge-transfer-to-solvent states are studied in I- (H2O)(n=3-10) clusters and their deuterated counterparts using time-resolved photoelectron imaging. The photoelectron spectra for clusters with n > or = 5 reveal multiple time scales for dynamics after their electronic excitation. An increase in the vertical detachment energy (VDE) by several hundred millielectronvolts on a time scale of approximately 1 ps is attributed to stabilization of the excess electron, primarily through rearrangement of the solvent molecules, but a contribution to this stabilization from motion of the I atom cannot be ruled out. The VDE drops by approximately 50 meV on a time scale of tens of picoseconds; this is attributed to loss of the neutral iodine atom. Finally, the pump-probe signal decays with a time constant of 60 ps-3 ns, increasing with cluster size. This decay is commensurate with the growth of very slow electrons and is attributed to autodetachment. Smaller clusters (n = 3, 4) display simpler dynamics. Anisotropy parameters are reported for clusters n = 4-9.  相似文献   

16.
To characterize fullerenes (C(60) and C(70)) as photosensitizers in biological systems, the generation of active oxygen species, through energy transfer (singlet oxygen (1)O(2)) and electron transfer (reduced active oxygen radicals such as superoxide anion radical O(2)(-)* and hydroxyl radical *OH), was studied by a combination of methods, including biochemical (DNA-cleavage assay in the presence of various scavengers of active oxygen species), physicochemical (EPR radical trapping and near-infrared spectrometry), and chemical methods (nitro blue tetrazolium (NBT) method). Whereas (1)O(2) was generated effectively by photoexcited C(60) in nonpolar solvents such as benzene and benzonitrile, we found that O(2)(-)* and *OH were produced instead of (1)O(2) in polar solvents such as water, especially in the presence of a physiological concentration of reductants including NADH. The above results, together with those of a DNA cleavage assay in the presence of various scavengers of specific active oxygen species, indicate that the active oxygen species primarily responsible for photoinduced DNA cleavage by C(60) under physiological conditions are reduced species such as O(2)(-)* and *OH.  相似文献   

17.
We present complete active space self-consistent field (CASSCF) ab initio molecular dynamics (AIMD) simulations of the preparation of the metastable species vinylidene, and its subsequent, highly exothermic isomerization to acetylene, via electron removal from vinylidene anion (D(2)C=C(-) --> D(2)C=C: --> DC triple bond CD). After equilibrating vinylidene anion-d(2) at either 600 +/- 300 K (slightly below the isomerization barrier) or 1440 K +/- 720 K (just above the isomerization barrier), we remove an electron to form a vibrationally excited singlet vinylidene-d(2) and follow its dynamical evolution for 1.0 ps. Remarkably, we find that none of the vinylidenes equilibrated at 600 K and only 20% of the vinylidenes equilibrated at 1440 K isomerized, suggesting average lifetimes >1 ps for vibrationally excited vinylidene-d(2). Since the anion and neutral vinylidene are structurally similar, and yet extremely different geometrically from the isomerization transition state (TS), neutral vinylidene is not formed near the TS so that it must live until it has sufficient instantaneous kinetic energy in the correct vibrational mode(s). The origin of the delay is explained via both orbital rearrangement and intramolecular vibrational energy redistribution (IVR) effects. Unique signatures of the isomerization dynamics are revealed in the anharmonic vibrational frequencies extracted from the AIMD, which should be observable by ultrafast vibrational spectroscopy and in fact are consistent with currently available experimental spectra. Most interestingly, of those trajectories that did isomerize, every one of them violated conventional transition-state theory by recrossing back to vinylidene multiple times, against conventional notions that expect highly exothermic reactions to be irreversible. The dynamical motion responsible for the multiple barrier recrossings involves strong mode-coupling between the vinylidene CD(2) rock and a local acetylene DCC bend mode that has been recently observed experimentally. The multiple barrier recrossings can be used, via a generalized definition of lifetime, to reconcile extremely disparate experimental estimates of vinylidene's lifetime (differing by at least 6 orders of magnitude). Last, a caveat: These results are constrained by the approximations inherent in the simulation (classical nuclear motion, neglect of rotation-vibration coupling, and restriction to C(s) symmetry); refinement of these predictions may be necessary when more exact simulations someday become feasible.  相似文献   

18.
Low energy electron attachment (DEA) to hexafluoroacetone azine (HFAA) leads to a remarkable energy selective excision of CN(-) within a pronounced resonance located at 1.35 eV. The underlying dissociative electron attachment (DEA) reaction involves multiple bond cleavages and rearrangement within the neutral products. A series of further fragment ions (F(-), CF(3)(-), (CF(3))(2)C(-) and (CF(3))(2)CN(-)) are observed from resonant features above 2 eV and only (CF(3))(2)CN(-) is additionally formed within a narrow resonance below 1 eV. In contrast to CN(-) all the remaining fragment ions can be formed by simple bond cleavages with (CF(3))(2)CN(-) being the result of a symmetric decomposition of the target molecule by cleavage of the (N-N) bond with the excess charge localised on either of the identical fragments. Our ab initio calculations predict an adiabatic electron affinity of HFAA close to 2 eV with the geometry of the relaxed anion considerably distorted with respect to that of the neutral molecule.  相似文献   

19.
Unsymmetric dumbbell molecules based on N-methylpyrrolidine[60]fullerene, oligothienylenevinylenes (nTV; n=2, 4), and N-methylpyrrolidine[70]fullerene, namely, C(60) -nTV-C(70) were synthesized and their photophysical properties were studied. In nonpolar solvents, photoinduced energy-transfer process predominantly takes place from the singlet excited state of nTV to C(60) and C(70) , as was confirmed by time-resolved emission and transient absorption spectroscopy. In polar solvent, charge-separation processes take place instead of energy transfer. The generated charge-separated radical-ion pairs decay to the neutral molecules by a fast charge-recombination process; for n=4, a rate constant of 2×10(7) s(-1) and lifetime of 50 ns were evaluated.  相似文献   

20.
This paper presents the first observation of coincidental emission of photons, electrons and secondary ions from individual C(60) keV impacts. An increase in photon, electron and secondary ion yields is observed as a function of C(60) projectile energy. The effect of target structure/composition on photon and electron emissions at the nanometer level is shown for a CsI target. The time-resolved photon emission may be characterized by a fast component emission in the UV-Vis range with a short decay time, while the electron and secondary ion emission follow a Poisson distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号