首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We present a novel computational methodology for determining fluid-phase equilibria in binary mixtures. The method is based on a combination of highly efficient transition-matrix Monte Carlo and histogram reweighting. In particular, a directed grand-canonical transition-matrix Monte Carlo scheme is used to calculate the particle-number probability distribution, after which histogram reweighting is used as a postprocessing procedure to determine the conditions of phase equilibria. To validate the methodology, we have applied it to a number of model binary Lennard-Jones systems known to exhibit nontrivial fluid-phase behavior. Although we have focused on monatomic fluids in this work, the method presented here is general and can be easily extended to more complex molecular fluids. Finally, an important feature of this method is the capability to predict the entire fluid-phase diagram of a binary mixture at fixed temperature in a single simulation.  相似文献   

2.
We use discontinuous molecular dynamics and grand-canonical transition-matrix Monte Carlo simulations to explore how confinement between parallel hard walls modifies the relationships between packing fraction, self-diffusivity, partial molar excess entropy, and total excess entropy for binary hard-sphere mixtures. To accomplish this, we introduce an efficient algorithm to calculate partial molar excess entropies from the transition-matrix Monte Carlo simulation data. We find that the species-dependent self-diffusivities of confined fluids are very similar to those of the bulk mixture if compared at the same, appropriately defined, packing fraction up to intermediate values, but then deviate negatively from the bulk behavior at higher packing fractions. On the other hand, the relationships between self-diffusivity and partial molar excess entropy (or total excess entropy) observed in the bulk fluid are preserved under confinement even at relatively high packing fractions and for different mixture compositions. This suggests that the excess entropy, calculable from classical density functional theories of inhomogeneous fluids, can be used to predict some of the nontrivial dynamical behaviors of fluid mixtures in confined environments.  相似文献   

3.
Phase equilibria of a square-well fluid in planar slit pores with varying slit width are investigated by applying the grand-canonical transition-matrix Monte Carlo (GC-TMMC) with the histogram-reweighting method. The wall-fluid interaction strength was varied from repulsive to attractive such that it is greater than the fluid-fluid interaction strength. The nature of the phase coexistence envelope is in agreement with that given in literature. The surface tension of the vapor-liquid interface is calculated via molecular dynamics simulations. GC-TMMC with finite size scaling is also used to calculate the surface tension. The results from molecular dynamics and GC-TMMC methods are in very good mutual agreement. The vapor-liquid surface tension, under confinement, was found to be lower than the bulk surface tension. However, with the increase of the slit width the surface tension increases. For the case of a square-well fluid in an attractive planar slit pore, the vapor-liquid surface tension exhibits a maximum with respect to wall-fluid interaction energy. We also report estimates of critical properties of confined fluids via the rectilinear diameter approach.  相似文献   

4.
New Monte Carlo simulations are presented for nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent specifically investigating the roles of tail attraction and binary mixtures of different tail lengths. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate thermodynamic adsorption and surface-tension isotherms and compare results quantitatively to single-surfactant adsorption (Langmuir, 2007, 23, 1835). Surfactant tail groups with attractive interaction lead to cooperative adsorption at high surface coverage and higher maximum adsorption at the interface than those without. Moreover, adsorption and surface-tension isotherms with and without tail attraction are identical at low concentrations, deviating only near maximum coverage. Simulated binary mixtures of surfactants with differing lengths give intermediate behavior between that of the corresponding single-surfactant adsorption and surface-tension isotherms both with and without tail attraction. We successfully predict simulated mixture results with the thermodynamically consistent ideal adsorbed solution (IAS) theory for binary mixtures of unequal-sized surfactants using only the simulations from the single surfactants. Ultimately, we establish that a coarse-grained LJ surfactant system is useful for understanding actual surfactant systems when tail attraction is important and for unequal-sized mixtures of amphiphiles.  相似文献   

5.
6.
A generalized corresponding-state model based on two reference fluids was developed for the prediction of surface tensions for non-polar and weakly polar pure fluids and their binary mixtures. Four parameters,po, Tc, Vc and ω, were used in this model, and the acentric factor ω was used as a scaling parameter. This model has been tested for 69 pure substances and 20 binary mixtures; the average absolute deviations are 0. 28 and 0. 20 mN/m, respectively. The results indicate that the predictions by means of this model were in good agreement with experimental data. In addition, the calculated deviation would increase with the excess surface tension rising, and if the excess surface tension is less than 3 mN/m, the prediction will be good and credible.  相似文献   

7.
Vapor-liquid interfacial properties of square-well associating fluids are studied via transition-matrix Monte Carlo simulation. Results for one-site and two-site association models are presented. Coexistence properties, surface tension, cluster distribution, density profile, and orientation profile are presented. Molecular association affects the interfacial properties and cluster fractions more than it affects the bulk densities. We observe that the surface tension exhibits a maximum with respect to association strength. This behavior is in agreement with the recent study of Peery and Evans for one site system using a square-gradient approach.  相似文献   

8.
Grand-canonical transition-matrix Monte Carlo is combined with configurational-bias and expanded ensemble Monte Carlo techniques to obtain saturated densities and vapor pressures of select n-alkanes. Surface tension values for butane, hexane, and octane are also computed via the finite-size scaling method of Binder. The exponential-6 model of Errington and Panagiotopoulos is used to describe the molecular interactions. The effect of the number of configurational-bias trial conformations on the efficiency of phase equilibra calculations is studied. We find that a broad range of trial conformation numbers give reasonable performance, with the optimal value increasing with decreasing temperature for a fixed chain length. Phase coexistence properties are in good agreement with literature values and are obtained with very reasonable computing resources. Similar to other recently developed n-alkane force fields, the exponential-6 model overestimates the surface tension relative to experimental values. Statistical uncertainties for coexistence properties obtained with the current approach are relatively small compared to existing methods.  相似文献   

9.
We report results from a comparative study of the influence of tail corrections on the surface tension of the Lennard-Jones fluid. We find that cutoff-independent surface tensions can be obtained by applying a set of tail corrections recently introduced by Janecek at each step of an interfacial Monte Carlo (MC) or molecular dynamics (MD) simulation. The effect of tail corrections on an alternative methodology for calculating surface tension, the combination of finite-size scaling and grand-canonical transition-matrix Monte Carlo (FSS/GC-TMMC), was also investigated. Using this indirect method, surface tensions were calculated with standard (bulk-fluid) tail corrections and lattice sums, the latter usually considered more accurate but computationally more intensive than the former. With standard tail corrections, we find that the surface tension decreases with increasing cutoff distance, reaching a limiting value corresponding to the maximum cutoff possible, namely half the simulation box length. In contrast, surface tension values obtained with the lattice summation were cutoff-independent. More importantly, these values were equivalent to those surface tension values obtained using standard tail corrections and a cutoff distance of half the box length. We also find that the surface tension values obtained here are in agreement with those found in the literature. Last, we find that surface tension values obtained by MD and FSS/GC-TMMC are in decent agreement so long as the appropriate tail correction schemes are used, and that the relative uncertainties in the surface tensions calculated by MD are generally an order of magnitude greater than those calculated by FSS/GC-TMMC. However, the time required by MD on a single central processing unit is less than that required by FSS/GC-TMMC.  相似文献   

10.
Prewetting transition is studied for the square-well fluid of attractive-well diameter lambda(ff)sigma(ff)=1.5 in the presence of a homogeneous surface modeled by the square-well potential of attractive well from 0.8sigma(ff) to 1.8sigma(ff). We investigate surface phase coexistence of thin-thick film transition using grand-canonical transition matrix Monte Carlo (GC-TMMC) and histogram reweighting techniques. Molecular dynamics (MD) and GC-TMMC are utilized to predict the properties of the fluid for various surface fluid affinities. Occurrences of prewetting transition with the variation of surface affinity are observed for a domain of reduced temperature from T(*)=0.62 to 0.75. We have used MD and GC-TMMC+finite size scaling (FSS) simulations to calculate the boundary tension as a function of temperature as well as surface affinity. Boundary tensions via MD and GC-TMMC+FSS methods are in good agreement. The boundary tension increases with the decrease of wall-fluid affinity. Prewetting critical properties are calculated using rectilinear diameter approach and scaling analysis. We found that critical temperature and density increase with the decrease of wall-fluid affinity.  相似文献   

11.
Monte Carlo simulations are used to trace the critical loci for a number of binary mixtures. In particular, we use grand canonical Monte Carlo (GCMC) simulations with histogram reweighting and mixed-field finite-size scaling to determine the mixture critical lines. Two different classes of criticality are investigated. A mixture of methane and ethane displays type I criticality, exhibiting continuous mixing between the two species across the entire composition range. A methane-water mixture shows type IIIb criticality, with a discontinuity in the critical locus. Quantitative agreement is found between simulation and experimental critical loci for the methane-ethane system using no adjustable parameters for interactions in the mixture. For the water-methane system, we investigate the effect of the combining rules for the intermolecular interaction between the two species on the mixture critical locus. We also investigate several potentials for methane: a nonpolar exponential-6, an octopolar fixed partial charge, and a polarizable fluctuating charge model. Qualitative agreement between simulations and experiments is found for all potentials, but none are able to quantitatively capture the abrupt increase in the critical temperature as methane is added to the system.  相似文献   

12.
The surface tensions of 21 pure refrigerants have been predicted by a new improved equation based on the principle of corresponding states with double referenced fluids.The average absolute deviation between the calculated surface tensions from the equation and the experimental result is-0.015 mN/m.The surface tensions of 9 binary mixtures were calculated in consideration of certain mixing rules.And the average absolute deviation between the calculated surface tensions from the equation and the experimental result is-0.251 mN/m.The new improved prediction equation can be used for calculating the surface tension of environmental friendly refrigerants.  相似文献   

13.
The interface and surface properties and the wetting behavior of polymer-solvent mixtures are investigated using Monte Carlo simulations and self-consistent field calculations. We carry out Monte Carlo simulations in the framework of a coarse-grained bead-spring model using short chains (oligomers) of N(P)=5 beads and a monomeric solvent, N(S)=1. The self-consistent field calculations are based on a simple phenomenological equation of state for compressible binary mixtures and we employ Gaussian chain model. The bulk behavior of the polymer-solvent mixture belongs to type III in the classification of van Konynenburg and Scott [Phil. Trans. R. Soc. London, Ser. A 298, 495 (1980)]. It is characterized by a triple line on which the polymer-liquid coexists with solvent-vapor and a solvent-rich liquid. The solvent is not homogeneously distributed across the dense polymer film but tends to accumulate at the surface and the polymer-vapor interface. This solvent enrichment at the interface and surface becomes more pronounced upon increasing the vapor pressure and alters the surface and interface tensions. This effect gives rise to a nonmonotonic dependence of the contact angle on the vapor pressure and one might observe reentrant wetting. The results of the Monte Carlo simulations and the self-consistent field calculations qualitatively agree. The profiles of drops are investigated by Monte Carlo simulations and a pronounced solvent enrichment is observed at the wedge formed by the substrate and the liquid-vapor interface at the three-phase contact line.  相似文献   

14.
A novel test-area (TA) technique for the direct simulation of the interfacial tension of systems interacting through arbitrary intermolecular potentials is presented in this paper. The most commonly used method invokes the mechanical relation for the interfacial tension in terms of the tangential and normal components of the pressure tensor relative to the interface (the relation of Kirkwood and Buff [J. Chem. Phys. 17, 338 (1949)]). For particles interacting through discontinuous intermolecular potentials (e.g., hard-core fluids) this involves the determination of delta functions which are impractical to evaluate, particularly in the case of nonspherical molecules. By contrast we employ a thermodynamic route to determine the surface tension from a free-energy perturbation due to a test change in the surface area. There are important distinctions between our test-area approach and the computation of a free-energy difference of two (or more) systems with different interfacial areas (the method of Bennett [J. Comput. Phys. 22, 245 (1976)]), which can also be used to determine the surface tension. In order to demonstrate the adequacy of the method, the surface tension computed from test-area Monte Carlo (TAMC) simulations are compared with the data obtained with other techniques (e.g., mechanical and free-energy differences) for the vapor-liquid interface of Lennard-Jones and square-well fluids; the latter corresponds to a discontinuous potential which is difficult to treat with standard methods. Our thermodynamic test-area approach offers advantages over existing techniques of computational efficiency, ease of implementation, and generality. The TA method can easily be implemented within either Monte Carlo (TAMC) or molecular-dynamics (TAMD) algorithms for different types of interfaces (vapor-liquid, liquid-liquid, fluid-solid, etc.) of pure systems and mixtures consisting of complex polyatomic molecules.  相似文献   

15.
Results of Monte Carlo simulations are reported for the interfacial tension between two fluid phases in a binary mixture of penetrable spheres in which molecular pairs of like species do not interact, while those of unlike species interact as hard spheres. Semigrand canonical ensemble Monte Carlo simulations in a cubic cell with periodic boundary conditions are used to obtain histograms for various system sizes at various densities. At a given density, the interfacial tension and compositions of coexisting phases for an infinite system are evaluated via histogram analysis combined with finite-size scaling. The density dependence of the interfacial tension and phase diagram for an infinite system are thus obtained. The simulated behavior of the interfacial tension close to the critical density corroborates previous suggestions that the model belongs to the three-dimensional Ising universality class.  相似文献   

16.
We have developed a new method for the three-dimensional modeling of extended X-ray absorption fine structure (EXAFS) spectra which enables the extraction of the local structure of aqueous metal complexes from spectral mixtures of several components. The new method combines two techniques: Monte Carlo simulation and target transformation factor analysis (TFA). Monte Carlo simulation is used to create random arrangements between the X-ray absorbing metal ion and the ligand atoms, and to calculate the theoretical EXAFS spectrum of each arrangement. The theoretical EXAFS spectrum is then introduced as test spectrum in the TFA procedure, to test whether or not the test spectrum is likely to be a component of the spectral mixtures. This coupled procedure is repeated until the error in the test spectrum is minimized. The new method can thus be used to isolate and refine the structure of complexes from spectral mixtures and to determine their relative concentrations, solely on the basis of an estimate of a ligand structure. The performance of the proposed method is validated using uranium Liii-edge EXAFS spectra of binary mixtures of two uranium(VI) 3,4-dihydroxybenzoic acid complexes.  相似文献   

17.
The Monte Carlo method in conjunction with the grand canonical ensemble was used to calculate the isotherms of adsorption of methane, nitrogen, and mixtures thereof in 1.34 × 3.02-nm rectangular-cross-section and 2.35 × 2.35-nm square pores in a lamellar carbon adsorbent. The phase diagrams of adsorbed methane were plotted, and the characteristics of the phases of the adsorbate were described. Modeling the adsorption of the binary mixture demonstrated that the square carbon pore is more selective with respect to methane.  相似文献   

18.
The behavior of binary Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] mixture in confined geometry is investigated. The influence of confinement on phase separation is examined. Coexistence curves for the mixture in slitlike pores and pores of complex geometry are calculated in Monte Carlo simulations. Finite size scaling analysis is used to determine precisely the location of critical point for the bulk mixture.  相似文献   

19.
The apparent critical point of the pure fluid and binary mixtures interacting with the Lennard-Jones potential has been calculated using Monte Carlo histogram reweighting techniques combined with either a fourth order cumulant calculation (Binder parameter) or a mixed-field study. By extrapolating these finite system size results through a finite size scaling analysis we estimate the infinite system size critical point. Excellent agreement is found between all methodologies as well as previous works, both for the pure fluid and the binary mixture studied. The combination of the proposed cumulant method with the use of finite size scaling is found to present advantages with respect to the mixed-field analysis since no matching to the Ising universal distribution is required while maintaining the same statistical efficiency. In addition, the accurate estimation of the finite critical point becomes straightforward while the scaling of density and composition is also possible and allows for the estimation of the line of critical points for a Lennard-Jones mixture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号