首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of dimension index d f of the phonon spectrum, which is a structural characteristic in continual models, on the stability of states of condensed media is considered in the Einstein and Debye approximations. The estimate of the phase state stability is based on the Lindemann criterion generalized to arbitrary values of 0 ≤ d f ≤ ∞. The problem of variation of physical characteristic of a substance by controlling the structure of its phonon spectrum is considered by analyzing the possibility of obtaining molecular hydrogen in the superfluid state. The Einstein and Debye models as applied to the problem on the dynamics of atomic oscillations are compared, and the divergence of the latter model for fractal dimensions d f < 2 of the phonon spectrum is demonstrated, as well as the incompatibility of the Debye model at high temperatures and the model of a classical oscillator for all dimensions except d f → ∞.  相似文献   

2.
We built up star-branched polymers, whose morphology is fully determined by diffusion, with p=1,3,6 and 12 branches with a total of 30,000 monomer units. We investigated their structural properties by calculating the monomer-monomer correlation functions. A detailed finite size scaling analysis of the radius of gyration was also performed to determine the exponent and the corrections to scaling. From these results we calculated the fractal dimension of the branched aggregates and obtained: df=1.222(7), for the linear chain, df=1.2305(8), df=1.247(8) and df=1.261(8) for the three, six and twelve branches polymer, respectively.  相似文献   

3.
The critical behavior of the Ising model on fractal substrates with noninteger Hausdorff dimension dH<2 and infinite ramification order is studied by means of the short-time critical dynamic scaling approach. Our determinations of the critical temperatures and critical exponents β, γ, and ν are compared to the predictions of the Wilson-Fisher expansion, the Wallace-Zia expansion, the transfer matrix method, and more recent Monte Carlo simulations using finite-size scaling analysis. We also determined the effective dimension (def), which plays the role of the Euclidean dimension in the formulation of the dynamic scaling and in the hyperscaling relationship def=2β/ν+γ/ν. Furthermore, we obtained the dynamic exponent z of the nonequilibrium correlation length and the exponent θ that governs the initial increase of the magnetization. Our results are consistent with the convergence of the lower-critical dimension towards d=1 for fractal substrates and suggest that the Hausdorff dimension may be different from the effective dimension.  相似文献   

4.
Laidlaw  Don  MacKay  Gary  Jan  Naeem 《Journal of statistical physics》1987,46(3-4):507-515
A new algorithm is presented, based on elements of artificial intelligence theory, to determine the fractal properties of the backbone of the incipient infinite cluster. It is found that the fractal dimensionality of the backbone isd f BB =1.61±0.01, the chemical dimensionality isd t=1.40±0.01, and the fractal dimension of the minimum pathd min=1.15 ± 0.02 for the two-dimensional triangular lattice.  相似文献   

5.
The pore size distribution is quite significant for determining the transport capacity of heat and moisture in sludge during the drying process. It is crucial to investigate the transformation of the pore size in sludge under sonication. In this paper, the microstructures of pores inside sludge before and after ultrasonic treatment with various ultrasonic conditions were observed using a microscope. Fractal geometry and image analysis were combined to quantitatively identify the evolution of pore size in sludge undergoing various acoustic energy densities and treatment times. The surface fractal dimension (df) was applied to characterize the pore size distribution of sludge. The results confirmed that sonication has a positive influence on the characteristics of pore structure inside the sludge and that the average pore size increases with increasing ultrasonic energy level, as determined by both acoustic energy density and treatment time. The df appropriately characterizes and quantifies the evolution of the pore size distribution of sludge under various ultrasonic conditions. This work is quite valuable for further investigating and evaluating moisture removal in the sludge drying process assisted by ultrasonic treatment.  相似文献   

6.
The results of an experimental study of the formation of nanometer-size Au clusters on NaCl(100) and HOPG(0001) surfaces under pulsed laser deposition are presented. No clusters of small sizes (d ≤ 1 nm) have been found in the cluster size distribution. The distribution itself at d < 5 nm has the form of a percolation distribution. It has been established that the perimeter of clusters with sizes d < 5 nm has a fractal structure. The fractal dimension of clusters is different for NaCl(100) and HOPG(0001) surfaces with different symmetries; it decreases with increasing cluster size from D f ≈ 1.2–1.4 at d ≈ 1.5 nm to D f ≈ 1 at d ≈ 5 nm. A physical mechanism of nanocluster formation is suggested. Under pulsed laser deposition, the attainable densities of adatoms are close to the percolation threshold in the region of thermodynamically unstable states and many-particle correlation regions are formed in a spatially inhomogeneous adsorbate. Clusters are formed on the surface from many-particle correlation regions in several diffusion jumps. The suggested mechanism allows the fractal dimension of the clusters forming on surfaces with different symmetries, its dependence on cluster size, and the cluster size distribution functions to be calculated.  相似文献   

7.
The heat capacity of Tb2Cu2O5 in the temperature range 379–924 K has been measured using differential scanning calorimetry. It has been shown that the obtained dependence C p = f(T) can be described by a combination of the Debye and Einstein functions.  相似文献   

8.
Takashi Nagatani 《Physica A》2007,386(1):381-387
We study the dynamical behavior of vehicular traffic through a sequence of traffic lights positioned self-similarly on a highway, where all traffic lights turn on and off simultaneously with cycle time Ts. The signals are positioned self-similarly by Cantor set. The nonlinear-map model of vehicular traffic controlled by self-similar signals is presented. The vehicle exhibits the complex behavior with varying cycle time. The tour time is much lower such that signals are positioned periodically with the same interval. The arrival time T(x) at position x scales as (T(x)-x)∝xdf, where df is the fractal dimension of Cantor set. The landscape in the plot of T(x)−x against cycle time Ts shows a self-affine fractal with roughness exponent α=1−df.  相似文献   

9.
We consider the application of fractal concepts to polymer statistics and to anomalous transport in randomly porous media. It is found that answers to interesting physics questions can be expressed in terms of several new fractal dimensions (in addition to the fractal dimensiond f ): (1)d f BB , the fractal dimension of the backbone, arises in connection with electric current flow, (2)d red, the fractal dimension of the singly connected bonds in the backbone, arises in connection with its equivalence to the thermal scaling power, (3)d E, the fractal dimension of the of the elastic backbone, (4)d u, the fractal dimension of the unscreened perimeter, arises in connection with the viscosity singularity at the gelation threshold, (5)d min the fractal dimension of the minimum path (or chemical distance) between two sites, arises in co-nnection with the Aharony-Stauffer conjecture, (6)dw, the fractal dimension of a random walk, (7)d G, the fractal dimension of growth sites that arise as a random walk creates a cluster. Relations among these fractal dimensions are discussed, some of which can be proved and others of which are conjectures whose validity has been established only in certain limiting cases.Supported in part at the Center for Polymer Studies by grants from ONR and NSF.  相似文献   

10.
We show that instantaneous configurations of 180° domain walls constructed on a square lattice in a two-dimensional and S = 12 Ising-type model exhibit fractal structure. The fractal dimension depends on the coupling parameters and it is a continuous function of the temperature. The wall thickness in the neighbourhood of Tc presents scaling properties in good agreement with the classical theory by Landau.  相似文献   

11.
The original theory of a proximity effect is proposed for the bi- and tri-layered system ferromagnetic metal/superconductor (F/S) in dirty limit. The F1/S/F2 trilayer is examined more closely. The distinctions in materials, in thicknesses of F layers (df1 and df2), in parameters interfaces, and in local environments of layers are considered among the causes of incommensurability of trilayer. The peculiar Tc(df1, df2) interference pattern is predicted for the F1/S/F2 systems. The reentrant superconductivity and possibility of the better observability of the spin-valve regime are discussed.  相似文献   

12.
The growth mechanism of fractal islands on a two-dimensional nonlattice substrate with periodic boundary conditions has been investigated by using Monte Carlo technique. Results show that the fractal dimension df of the final ramified islands is almost independent of the diffusion step length, mobility and rigid rotation of the islands. The characteristics of the size distribution of the discs in an island do not change the dimension df of the island. However, we find that df increases linearly with the surface coverage ρ of the system and its slope decreases with the increase of the mean diameter of the discs.  相似文献   

13.
The specific heat and magnetic susceptibility of the transition metal oxide ReO3 have been measured. The specific heat results give a Debye temperature ΘD = 460 ± 10 K and an electronic specific heat coefficient γ = 6.45 ± 0.07 cal/mole K2 which are in good agreement with similar measurements on the cubic sodium tungsten bronzes. The magnetic susceptibility and the electronic contribution to the specific heat are within a few percent of the corresponding parameters calculated from the free electron model with one electron per unit cell. Our results show that ReO3 behaves much like a simple metal. No experimental evidence for narrow d-band effects was observed.  相似文献   

14.
A universal empirical relationship, connecting the Debye temperatures of a metal, θM, and its hydride, θH, with the hydride's heat of formation, ΔHf, is derived from experimental data. This relation may be useful in estimating one of the three parameters, θM, θH or ΔHf, if the other two are known.  相似文献   

15.
We present a technique to measure the fractal dimension of the set of points (t, f(t)) forming the graph of a function f defined on the unit interval. First we apply it to a fractional Brownian function [1] which has a property of self-similarity for all scales, and we can get the stable and precise fractal dimension. This technique is also applied to the observational data of natural phenomena. It does not show self-similarity all over the scale but has a different self-similarity across the characteristic time scale. The present method gives us a stable characteristic time scale as well as the fractal dimension.  相似文献   

16.
A quantum-statistical method is used for deriving expressions for the isochoric heat capacity of a solid, taking into account the fractal dimension of the structure and anharmonism of atomic vibrations. At low and high temperatures, analogs of the Debye and Dulong-Petit laws are obtained. It is shown in the first approximation of perturbation theory that at comparatively high temperatures, the heat capacity is proportional to the first power of temperature, irrespective of the fractal dimension. Some results of experiments and computer simulation are analyzed.  相似文献   

17.
Changhan Lee 《Physica A》2010,389(21):5053-5060
The height-height correlations of the surface growth for equilibrium and nonequilibrium restricted solid-on-solid (RSOS) model were investigated on randomly diluted lattices, i.e., on infinite percolation networks. It was found that the correlation function calculated over the chemical distances reflected the dynamics better than that calculated over the geometrical distances. For the equilibrium growth on a critical percolation network, the correlation function for the evolution time t?1 yielded a power-law behavior with the power ζ, associated with the roughness exponent ζ via the relation ζ=ζdf/dl, with df and dl being, respectively, the fractal dimension and the chemical dimension of the substrate. For the nonequilibrium growth, on the other hand, the correlation functions did not yield power-law behaviors for the concentration of diluted sites x less than or equal to the critical concentration xc.  相似文献   

18.
We employ the numerically exact superposition T-matrix method to perform extensive computations of scattering and absorption properties of soot aggregates with varying state of compactness and size. The fractal dimension, Df, is used to quantify the geometrical mass dispersion of the clusters. The optical properties of soot aggregates for a given fractal dimension are complex functions of the refractive index of the material m, the number of monomers NS, and the monomer radius a. It is shown that for smaller values of a, the absorption cross section tends to be relatively constant when Df<2 but increases rapidly when Df>2. However, a systematic reduction in light absorption with Df is observed for clusters with sufficiently large NS, m, and a. The scattering cross section and single-scattering albedo increase monotonically as fractals evolve from chain-like to more densely packed morphologies, which is a strong manifestation of the increasing importance of scattering interaction among spherules. Overall, the results for soot fractals differ profoundly from those calculated for the respective volume-equivalent soot spheres as well as for the respective external mixtures of soot monomers under the assumption that there are no electromagnetic interactions between the monomers. The climate-research implications of our results are discussed.  相似文献   

19.
The transition phase of PtN from zincblende (ZB) structure to rocksalt (RS) structure is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures under high pressure and temperature are obtained through the quasi-harmonic Debye model. The transition phase from the ZB structure to the RS structure occurs at the pressure of 18.2 GPa, which agrees well with other calculated values. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, together with the heat capacity CV on the temperature T are also successfully obtained.  相似文献   

20.
We have investigated structural and elastic properties of PtN2 under high pressures using norm-conserving pseudopotentials within the local density approximation (LDA) in the frame of density-functional theory. Calculated results of PtN2 are in agreement with experimental and available theoretical values. The a/a0, V/V0, ductility/brittleness, elastic constants Cij, shear modulus C′, bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ and anisotropy factor A as a function of applied pressure are presented. Through the quasi-harmonic Debye model, we also study thermodynamic properties of PtN2. The thermal expansion versus temperature and pressure, thermodynamic parameters X (X=Debye temperature or specific heat) with varying pressure P, and heat capacity of PtN2 at various pressures and temperatures are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号