首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The He I and He II ultraviolet photoelectron spectra of 2-fluoro-, 2-chloro-, 2-bromo-, and 2-iodopyridine have been recorded and interpreted in terms of a composite-molecule model. The sequence of the four lowest ionization energies for 2-fluoro- and 2-chloropyridine is: π3 (1a2) > nN (11a1) > π2 (2b1) > πpyr (7b2), whereas for 2-bromo- and 2-iodopyridine the assignment is: π3 (1a2) - πX > nN (11a1) > πX > π2 (2b1), where X represents a bromine and iodine lone-pair. Comparison of the He I and He II band intensities confirmed this assignment. However, ab initio calculations at the STO-3G*/STO-3G* and 6–31G**/STO-3G* levels did not agree with the sequence predicted by either the composite-molecule model, simple correlations and the He I/He II cross-section ratios. For the 2-fluoropyridine, a comparison using the HAM/3 model was found to be in agreement with this assignment.  相似文献   

2.
We present comparative experimental and theoretical studies of the absorption and fluorescence spectra of the alkali-metal dimer molecules Cs(2) and RbCs immersed in a solid helium matrix, thereby extending our recent observations of Rb(2) in solid (4)He. The laser-excited molecular states are mostly quenched by the interaction with the He matrix. The quenching efficiently populates the second lowest excited state of the molecule, i.e., (1) (3)Π((u)) that is metastable in the homonuclear dimers. Molecular excitation and emission bands are modeled by calculating Franck-Condon factors that give a reasonable agreement with the experimental findings.  相似文献   

3.
We have carried out a comprehensive experimental and theoretical investigation of the autoionizing collision systems He*(23 S, 21 S) + He*(23 S). We present high resolution electron energy spectra, obtained with a single He* beam (average relative collision energy 〈E rel〉=1.6 meV) and with crossed He* beams (〈E rel〉> =61 meV). The spectra show substantial structure, and under single beam conditions fast oscillations due to the interference of incoming and outgoing heavy particle waves in the entrance channels are observed. Accurate ab initio potential curves for the seven lowest He*—He*(Σ) molecular states have been obtained from a Feshbach projection scheme, and width functions for He*(23 S) + He*(23 S) have been derived by Stieltjes imaging. Based on these ab initio data, detailed quantum mechanical calculations of the electron spectra have been carried out and provide a thorough understanding of the experimentally observed spectral features. Good overall agreement of the calculated spectra with the experimental data is observed. The close coincidence in the positions of the experimental and theoretical peaks, especially for He*(23 S) + He*(23 S), underlines the reliability of the ab initio potentials. In the He*(21 S) + He*(23 S) electron spectrum, the dominant peak is traced to be due to autoionization from the 23Σ+ g molecular state accessed via an avoided crossing. We also present a detailed discussion of the total ionization cross sections σtot and of the fraction σAItot for associative ionization together with a critical comparison with previous work. The ionization probabilities for close collisions in entrance channels, from which autoionization is spin-allowed, are near unity, and therefore the absolute values and the collision energy dependence of the total cross sections simply reflect the long-range behaviour of the excited state potentials.  相似文献   

4.
We report the non-desorption of cesium (Cs) atoms on the surface of helium nanodroplets (He(N)) in their 6(2)P(1/2) ((2)Π(1/2)) state upon photo-excitation as well as the immersion of Cs(+) into the He(N) upon photo-ionization via the 6(2)P(1/2) ((2)Π(1/2)) state. Cesium atoms on the surface of helium nanodroplets are excited with a laser to the 6(2)P states. We compare laser-induced fluorescence (LIF) spectra with a desorption-sensitive method (Langmuir-Taylor detection) for different excitation energies. Dispersed fluorescence spectra show a broadening of the emission spectrum only when Cs-He(N) is excited with photon energies close to the atomic D(1)-line, which implies an attractive character of the excited state system (Cs?-He(N)) potential energy curve. The experimental data are compared with a calculation of the potential energy curves of the Cs atom as a function of its distance R from the center of the He(N) in a pseudo-diatomic model. Calculated Franck-Condon factors for emission from the 6(2)P(1/2) ((2)Π(1/2)) to the 6(2)S(1/2) ((2)Σ(1/2)) state help to explain the experimental data. The stability of the Cs?-He(N) system allows to form Cs(+) snowballs in the He(N), where we use the non-desorbing 6(2)P(1/2) ((2)Π(1/2)) state as a springboard for ionization in a two-step ionization scheme. Subsequent immersion of positively charged Cs ions is observed in time-of-flight mass spectra, where masses up to several thousand amu were monitored. Only ionization via the 6(2)P(1/2) ((2)Π(1/2)) state gives rise to a very high yield of immersed Cs(+) in contrast to an ionization scheme via the 6(2)P(3/2) ((2)Π(3/2)) state. When resonant two-photon ionization is applied to cesium dimers on He droplets, Cs(2) (+)-He(N) aggregates are observed in time-of-flight mass spectra.  相似文献   

5.
Separate Penning electron spectra were measured resulting from the ionization of H atoms by He(21S) and He(23S) metastables in thermal collisions. From these results potential parameters of the diatomics He(21S)-H(2S) (2Σ) and He(23S)-H(2S) (2Σ) as well as the cross-section ratio σ(singlet)/σ(triplet) are derived.  相似文献   

6.
We analyze the effect of the host crystal symmetry on the optical spectra of the 6P(1/2)-6S(1/2) and 6P(3/2)-6S(1/2) transitions of atomic Cs in solid (4)He matrices. In particular, we address the deformation of the bubble structures formed by Cs in such quantum crystals. We show that the anisotropy of the stiffness tensor leads to static quadrupolar bubble shape deformations in hexagonally close-packed (hcp) crystals, while the corresponding deformations in the body-centered cubic (bcc) phase of the matrix have a hexadecupolar symmetry. A comparison of the measured excitation spectra with our model calculations allow us to infer quantitative values of the deformation parameters.  相似文献   

7.
CBr_4和CCl_4分子的解离反应前人已做了许多工作,他们分别采用射频放电、电子轰击、He~ 的传能反应等方法研究了CCl_4和CBr_4的解离反应,得到了CCI(A)、CCl~ 、CBr~ 等碎片的发射光谱。有关亚稳态原子与它们的传能反应,只有某些较简单的报道,对传能反应机理也未作深入探讨。本文研究了各种亚稳态原子He(2~3S)、Ne(~3P_(0.2))、Ar(~3P_(0.2))与CCl_4和CBr_4分子的传能反应,并对反应机理进行了初步的讨论和分析。  相似文献   

8.
A series of heptametallic cyanide cages are described; they represent soluble analogues of defect-containing cyanometalate solid-state polymers. Reaction of 0.75 equiv of [Cp*Ru(NCMe)3]PF6, Et(4)N[Cp*Rh(CN)3], and 0.25 equiv of CsOTf in MeCN solution produced (Cs subset [CpCo(CN)3]4[Cp*Ru]3)(Cs subset Rh4Ru3). 1H and 133Cs NMR measurements show that Cs subset Rh4Ru3 exists as a single Cs isomer. In contrast, (Cs subset [CpCo(CN)3]4[Cp*Ru]3) (Cs subset Co4Ru3), previously lacking crystallographic characterization, adopts both Cs isomers in solution. In situ ESI-MS studies on the synthesis of Cs subset Rh4Ru3 revealed two Cs-containing intermediates, Cs subset Rh2Ru2+ (1239 m/z) and Cs subset Rh3Ru3+ (1791 m/z), which underscore the participation of Cs+ in the mechanism of cage formation. 133Cs NMR shifts for the cages correlated with the number of CN groups bound to Cs+: Cs subset Co4Ru4+ (delta 1 vs delta 34 for CsOTf), Cs subset Rh4Ru3 where Cs+ is surrounded by ten CN ligands (delta 91), Cs subset Co4Ru3, which consists of isomers with 11 and 10 pi-bonded CNs (delta 42 and delta 89, respectively). Although (K subset [Cp*Rh(CN)3]4[Cp*Ru]3) could not be prepared, (NH4 subset [Cp*Rh(CN)3]4[Cp*Ru]3) (NH4 subset Rh4Ru3) forms readily by NH4+-template cage assembly. IR and NMR measurements indicate that NH4+ binding is weak and that the site symmetry is low. CsOTf quantitatively and rapidly converts NH4 subset Rh4Ru3 into Cs subset Rh4Ru3, demonstrating the kinetic advantages of the M7 cages as ion receptors. Crystallographic characterization of CsCo4Ru3 revealed that it crystallizes in the Cs-(exo)1(endo)2 isomer. In addition to the nine mu-CN ligands, two CN(t) ligands are pi-bonded to Cs+. M subset Rh4Ru3 (M = NH4, Cs) crystallizes as the second Cs isomer, that is, (exo)2(endo)1, wherein only one CN(t) ligand interacts with the included cation. The distorted framework of NH4 subset Rh4Ru3 reflects the smaller ionic radius of NH4+. The protons of NH4+ were located crystallographically, allowing precise determination of the novel NH4...CN interaction. A competition experiment between calix[4]arene-bis(benzocrown-6) and NH4 subset Rh4Ru3 reveals NH4 subset Rh4Ru3 has a higher affinity for cesium.  相似文献   

9.
The vibrational, Raman, and IR, spectra of the five 12-crown-4 (12c4) complexes with Li+, Na+, K+, Rb+, and Cs+ alkali metal cations were measured. Except for a small shift of the position of some bands in the vibrational spectra of the Li+ complex, the vibrational spectra of the five complexes are so similar that it is concluded that the five complexes exist in the same conformation. B3LYP/6-31+G* force fields were calculated for six of the eight predicted conformations in a previous report (J. Phys. Chem. A 2005, 109, 8041) of the 12c4-Li+, Na+, and K+ complexes that are of symmetries higher than the C1 symmetry. These six conformations, in energy order, are of C4, Cs, Cs, C(2v), C(2v), and Cs symmetries. Comparison between the experimental and calculated vibrational frequencies assuming any of the above-mentioned six conformations shows that the five complexes exist in the C4 conformation. This agrees with the fact that the five alkali metal cations are larger than the 12c4 ring cavity. The B3LYP/6-31+G* force fields of the C4 conformation of the Li+, Na+ and K+ complexes were scaled using a set of eight scale factors and the scale factors were varied so as to minimize the difference between the calculated and experimental vibrational frequencies. The root-mean-square (rms) deviations of the calculated frequencies from the experimental frequencies were 7.7, 5.6, and 5.1 cm(-1) for the Li+, Na+, and K+ complexes, respectively. To account for the earlier results of the Li+ complex that the Cs conformation is more stable than the C4 conformation by 0.16 kcal/mol at the MP2/6-31+G* level, optimized geometries of the complex were calculated for the C4 and Cs conformations at the MP2/6-311++G** level. The C4 conformation was calculated to be more stable than the Cs conformation by 0.13 kcal/mol.  相似文献   

10.
Rovibrational spectra are measured for the HCCCN*HCN and HCN*HCCCN binary complexes in helium droplets at low temperature. Though no Q-branch is observed in the infrared spectrum of the linear HCN*HCCCN dimer, which is consistent with previous experimental results obtained for other linear molecules, a prominent Q-branch is found in the corresponding infrared spectrum of the HCCCN*HCN complex. This Q-branch, which is reminiscent of the spectrum of a parallel band of a prolate symmetric top, implies that some component of the total angular momentum is parallel to the molecular axis. The appearance of this particular spectroscopic feature is analyzed here in terms of a nonsuperfluid helium density induced by the molecular interactions. Finite temperature path integral Monte Carlo simulations are performed using potential energy surfaces calculated with second-order M?ller-Plesset perturbation theory, to investigate the structural and superfluid properties of both HCCCN*HCN(4He)N and HCN*HCCCN(4He)N clusters with N < or = 200. Explicit calculation of local and global nonsuperfluid densities demonstrates that this difference in the rovibrational spectra of the HCCCN*HCN and HCN*HCCCN binary complexes in helium can be accounted for by local differences in the superfluid response to rotations about the molecular axis, i.e., different parallel nonsuperfluid densities. The parallel and perpendicular nonsuperfluid densities are found to be correlated with the locations and strengths of extrema in the dimer interaction potentials with helium, differences between which derive from the variable extent of polarization of the CN bond in cyanoacetylene and the hydrogen-bonded CH unit in the two isomers. Calculation of the corresponding helium moments of inertia and effective rotational constants of the binary complexes yields overall good agreement with the experimental values.  相似文献   

11.
A crossed nozzle-beam experiment is used to investigate thermal energy collisions: Ne*(2p 53s,3 P 0, 2)+He(1s 2,1 S 0), almost purely elastic, and He*(1s2s,1, 3 S)+Ne(2p 6,1 S 0), in which inelastic excitation transfers occur. State and velocity selection of the scattered Ne* atoms is performed using a tunablecw dye laser frequency locked on a definite Zeeman component of the transition 1s 5→2p 6 (λ=614.3 nm) of20Ne or22Ne. In the purely elastic case, this technique allows the selection of one of the two final velocities, and then an unambiguous LAB-CM transformation. The differential cross section at 62 meV tallies on accords with a calculation using a single effective potential. In He* on Ne collisions, the main inelastic processes are endothermic excitation transfers from He*(21 S). Experimental results obtained at different energies (62, 95, 109, 124 meV) show that the transfers essentially result in levels 3s and 4d of Ne.  相似文献   

12.
用自洽场理论(HF)和密度泛函理论(DET)的B3LYP方法,在6-31G~μ水平上研究了HAINH的低聚物(HAINH)_n(n=1~6)簇的几何构型、电子结构、红外光谱和化学热力学性质,并比较了(HAINH)_n和(CIAINH)_n两种低聚物对应结构中化学键强弱,分析了引起(AIN)_n骨架结构发生变化的原因.结果表明,(HAINH)_n簇的基态结构为C_8(n=1),D_(2h)(n=2),D_(3h)(n=3),T_d(n=4),C_s(n=5)和D_(3d)(n=6)对称点群.HAINH基态结构中,AI-N键是三重键.在D_(2h)(n=2)和D_(3h)(n=3)结构中,所有AI-N键均为二重键.在Td(n=4)和D_(3d)(n=6)中,AI-N键为正常单键,而在C_s(n=5)结构中含有三种AI-N键:单键、双键和混合键.振动频率计算表明,结构a~f均为基态稳定结构.热力学计算给出的稳定性顺序为:f>d>e>c>b>a.  相似文献   

13.
Ab initio molecular orbital calculations were carried out to investigate the inter-radical interaction of the paired p-phenylenediamine radical cations in the singlet state. After initial optimization of the dimer in the parallel sandwich (D2h) and parallel displaced (Cs) configurations at the B3LYP/6-31G* theoretical level, the MP2/6-31G* and B3LYP/6-31G* single energies of the dimer were calculated as a function of the inter-radical distance R. The depths of the potential minima near R = 3.2 A were estimated to be in the order of the hydrogen bonding energy, assuming that the electrostatic contribution between the cations is canceled out by the attractive contributions due to the counter anions on the aspect of a simple electrostatic model. This can be related to the indications of the cation dimer formation in solution in the presence of counter anions at a low temperature reported previously in the literature by resonance Raman and electronic absorption spectra. The inter-radical (Raman active) frequencies of the dimer were calculated, one of which corresponds to the reported value at 161 cm(-1) observed in the resonance Raman spectrum in ethanol at 200 K by Yokoyama and Maeda (Chem. Phys. Lett. 48 (1977) 59).  相似文献   

14.
Grebenev S  Lugovoi E  Sartakov BG  Toennies JP  Vilesov AF 《Faraday discussions》2001,(118):19-32; discussion 43-62
Clusters of para-hydrogen (pH2) and ortho-deuterium (oD2) have been assembled around an OCS chromophore molecule inside He droplets in a molecular beam and studied via IR diode laser depletion spectroscopy (nu approximately 2060 cm-1). The superfluid 4He droplets provide a gentle host ensuring a constant low temperature of either T = 0.38 K for 4He droplets or T = 0.15 K for both the pure 3He and mixed 4He-3He droplets. The spectra show well resolved rotational structure of the vibrational bands for each attached hydrogen molecule in the range n = 1-8. With only one (n = 1) attached pH2, HD or an oD2 molecule the best fit rotational constants were used to determine the structure of the complex, which was found to be in surprisingly good agreement with quantum chemical calculations for the free complex. With n = 5 and 6 the Q-branch disappears for the pH2 clusters but not for the oD2 clusters which is consistent with a donut model. The moments of inertia of the pH2 and the oD2 complexes are explained by a new model in which each of the 18 attached helium atoms in a shell surrounding the OCS molecule are assigned a mass of 0.55, while each attached H2 and D2 molecule has an effective mass of about 10 and 12 u, respectively.  相似文献   

15.
A supersonic beam of metastable He(*) atoms and He(2) (*) a (3)Sigma(u) (+) molecules has been generated using a pulsed discharge at the exit of a pulsed valve prior to the gas expansion into vacuum. Pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the He(2) (+) X(+) (2)Sigma(u) (+) (v(+)=0-2)<--He(2) (*) a (3)Sigma(u) (+) (v(")=0-2) transitions and photoionization spectra of He(2) (*) in the vicinity of the lowest ionization thresholds have been recorded. The energy level structures of (4)He(2) (+) X(+) (2)Sigma(u) (+) (v(+)< or =2,N(+)< or =23) and (3)He(2) (+) X(+) (2)Sigma(u) (+) (v(+)=0,N(+)< or =11) have been determined, and an accurate set of molecular constants for all isotopomers of He(2) (+) has been derived in a global analysis of all spectroscopic data reported to date on the low vibrational levels of He(2) (+). The analysis of the photoionization spectrum by multichannel quantum defect theory has provided a set of parameters describing the threshold photoionization dynamics.  相似文献   

16.
The relative band intensities in the He I and He II photoelectron spectra of cyclopropane, oxirane, and thirane are interpreted by means of a recent theoretical approach. For each compound, the assignment of the two bands in the 15–18 eV range derived from our intensity arguments is opposite to the sequence of the respective ab initio eigenvalues.  相似文献   

17.
We have carried out experimental and theoretical studies of Penning ionization processes occurring in thermal energy collisions of state-selected metastable He*(23 S) and He*(21 S) atoms with ground state alkaline earth atoms X(X=Mg, Ca, Sr, Ba). Penning ionization electron energy spectra for these eight systems, measured with a crossed-beam set-up perpendicular to the collision velocity at energy resolutions 40–70 meV, are reported; relative populations of the different ionic X + (ml) states are presented and well depths D*e for the He*+X entrance channel potentials with uncertainties around 25 meV are derived from the electron spectra as follows: He*(23 S)+Mg/Ca/Sr/Ba: 130/250/240/260 meV; He*(21 S) +Mg/Ca/Sr/Ba: 300/570/550/670 meV. The spectra show substantial differences for the three ionic states X +(2 S), X +(2 P) and X +(2 D) and reveal that transitions to a repulsive potential — attributed to He+X +(2 P)2 Σ formation — are mainly involved for the X +(2 P) channel. Ab initio calculations of potential curves, autoionization widths, electron energy spectra and ionization cross sections are reported for the systems He*(23 S)+Ca and He*(21 S)+Ca. The respective well depths D e * are calculated to be 243(15) meV and 544(15) meV; the ionization cross sections at the experimental mean energy of 72 meV amount to 101 Å2 and 201 Å2, respectively. Very good overall agreement with the experimental electron spectra is observed.  相似文献   

18.
Rovibrational spectra of the He(2)-N(2)O complex in the nu(1) fundamental band of N(2)O (2224 cm(-1)) have been observed using a tunable infrared laser to probe a pulsed supersonic jet expansion, and calculated using five coordinates that specify the positions of the He atoms with respect to the NNO molecule, a product basis, and a Lanczos eigensolver. Vibrational dynamics of the complex are dominated by the torsional motion of the two He atoms on a ring encircling the N(2)O molecule. The resulting torsional states could be readily identified, and they are relatively uncoupled to other He motions up to at least upsilon(t) = 7. Good agreement between experiment and theory was obtained with only one adjustable parameter, the band origin. The calculated results were crucial in assigning many weaker observed transitions because the effective rotational constants depend strongly on the torsional state. The observed spectra had effective temperatures around 0.7 K and involved transitions with J < or =3, with upsilon(t) = 0 and 1, and (with one possible exception) with Deltaupsilon(t)=0. Mixing of the torsion-rotation states is small but significant: some transitions with Deltaupsilon(t) not equal 0 were predicted to have appreciable intensity even assuming that the dipole transition moment coincides perfectly with the NNO axis. One such transition was tentatively assigned in the observed spectra, but confirmation will require further work.  相似文献   

19.
Ionization of bromomethanes (CH3Br, CH2Br2, and CHBr3) upon collision with metastable He*(2(3)S) atoms has been studied by means of collision-energy-resolved Penning ionization electron spectroscopy. Lone-pair (nBr) orbitals of Br4p characters have larger ionization cross sections than sigma(C-Br) orbitals. The collision-energy dependence of the partial ionization cross sections shows that the interaction potential between the molecule and the He*(2(3)S) atom is highly anisotropic around CH3Br or CH2Br2, while isotropic attractive interactions are found for CHBr3. Bands observed at electron energies of approximately 2 eV in the He*(2(3)S) Penning ionization electron spectra (PIES) of CH2Br2 and CHBr3 have no counterpart in ultraviolet (He I) photoionization spectra and theoretical (third-order algebraic diagrammatic construction) one-electron and shake-up ionization spectra. Energy analysis of the processes involved demonstrates that these bands and further bands overlapping with sigma(C-Br) or piCH2 levels are related to autoionization of dissociating (He+ - Br-) pairs. Similarly, a band at an electron energy of approximately 1 eV in the He*(2(3)S) PIES spectra of CH3Br has been ascribed to autoionizing Br** atoms released by dissociation of (unidentified) excited states of the target molecule. A further autoionization (S) band can be discerned at approximately 1 eV below the lone-pair nBr bands in the He*(2(3)S) PIES spectrum of CHBr3. This band has been ascribed to the decay of autoionizing Rydberg states of the target molecule (M**) into vibrationally excited states of the molecular ion. It was found that for this transition, the interaction potential that prevails in the entrance channel is merely attractive.  相似文献   

20.
Collision-induced emission (CIE) experiments were carried out by coupling a spectrograph and charge-coupled device detector (CCD) to a commercial analytical mass spectrometer. An Einzel lens and a deceleration-reacceleration lens assembly as described in the current article were installed in the mass spectrometer to allow for the deceleration of the ions before collision. Collision-induced emission spectra of N2+*/He collisions at lab frame collision energies from 2 to 8 keV were obtained from 190-1020 nm. The emissions were assigned to the Deltav=+2, +1, 0, -1, -2 vibrational transition progression in the N2+* B 2Sigmau+-->X 2Sigmag+ electronic transition as well as some atomic lines from the fragments N+, N* and the target gas He. N2+* A 2u-->X 2Sigmag+ emission was also observed but was very weak due to the long lifetime of the A 2u state. The relative intensities of the N2+*, N, and N+ emissions are independent of the ion translational energy within the studied energy range. This observation supports the curve-crossing mechanism for collisional excitation, suggesting that a complicated sequence of curve-crossings takes place upon collisional activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号