首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of formation of a hydrocarbon film on the surface of a sample subjected to the action of an electron beam is studied at room temperature and in cooling a sample to the liquid nitrogen temperature. The thickness and the optical radiation transmission of such films are measured as functions of the electron beam radiation time, the sample temperature, and the level of vacuum. The film thickness is measured with atomic force microscopy. The absorption of the films is determined by comparing the cathodoluminescence intensities from a pure sample surface and from the surface covered with a film. The experimental results can be used to estimate the film formation rate as a function of the sample temperature and the vacuum and to determine the optical radiation absorption at a wavelength of 300, 360, 550, and 665 nm.  相似文献   

2.
The electron response of a Ca(001) face-centered cubic film to an external electrostatic field is calculated. The results of calculations are compared with the previously obtained data on the electron response of a Cu(001) film. The energy location of occupied and unoccupied excited surface states of the Ca(001) film is determined.  相似文献   

3.
This paper studies the effect of the inner structure of domain walls on the stability of an isolated stripe domain localized in a thin ferromagnetic film against a pulse of magnetic field applied perpendicularly to the film surface. It is found that the value of the critical amplitude of the pulsed signal strongly depends on the value of the magnetizing field in which the system was initially placed. It is also established that the difference on stability of domains with unipolar and bipolar walls in pulsed fields diminishes as the amplitude of the magnetizing field decreases. Finally, the dependence of the region of stability in a pulse field on the parameters of the system is determined for various domain types. Zh. éksp. Teor. Fiz. 116, 1694–1705 (November 1999)  相似文献   

4.
The effect of dissipation on nonlinear oscillations in a system of domain walls experiencing an external harmonic field is studied numerically. The problem is formulated for uniaxial ferromagnet films, with the easy magnetic axis being perpendicular to the surface and with the harmonic field being aligned with the axis. Account is taken of the dynamic redistribution of magnetic poles on the film surface, which enables one to derive, in a natural way, an expression for a restoring force acting on the domain walls. The force is a nonlinear function of domain-wall displacement from the equilibrium position. It is found that the domain walls may execute complicated steady-state quasi-periodic oscillations and long-term chaotic oscillations. Attractors in the phase space of the system are determined.  相似文献   

5.
The physical properties of magnetic domain walls and electrical conductivity of permalloy thin films under external magnetic fields were studied. Using a magnetic force microscope (MFM), we observed the variation of domain configurations with the change of applied magnetic field for different film thicknesses of 245, 320, and 415 nm. A superconducting quantum interference device (SQUID) was exploited to measure the magnetization loop for the applied magnetic field either parallel or perpendicular to the normal direction of the surface. We also found that the resistivity increases significantly as the electrical current conduction changed from parallel to perpendicular to the domain walls.  相似文献   

6.
The stationary dynamics of vortexlike domain walls in films with three magnetic axes and Goss orientation of the surface is studied for the first time with a micromagnetic method that exactly takes into account all basic types of interaction (including dipole-dipole interaction). Consideration is carried out using a 2D model of magnetization distribution by numerically solving Landau and Lifshitz’s nonlinear equations with attenuation in the Gilbert form. Dynamic configurations of domain walls are established, and the dependences of the domain wall velocity on an applied magnetic field, damping parameter, and magnetic film thickness are found.  相似文献   

7.
An ingenious method for fabricating network of polyaniline nanowires at room temperature in microsecond timescale is demonstrated by using the pulsed electron beam of a plasma focus device. The electron beam of the plasma focus device having a wide range of energies (10-200 keV) was irradiated on to the freestanding polyaniline film. The growth of polyaniline nanowires on the surface of film sample is confirmed by field emission scanning electron microscope images showing nanowires of about 50-80 nm in diameter and up to few tens of micrometers in length.  相似文献   

8.
We demonstrate an alternative nuclear spin resonance using a radio frequency (rf) electric field [nuclear electric resonance (NER)] instead of a magnetic field. The NER is based on the electronic control of electron spins forming a domain structure. The rf electric field applied to a gate excites spatial oscillations of the domain walls and thus temporal oscillations of the hyperfine field to nuclear spins. The rf power and burst duration dependence of the NER spectrum provides insight into the interplay between nuclear spins and the oscillating domain walls.  相似文献   

9.
Magnetic characteristics of a thin ferromagnetic film on the surface of an antiferromagnet are examined. Due to the roughness of the film-substrate interface, the system is frustrated, giving rise to domain walls of new type. The distributions of the order parameters in the domain walls are studied by mathematical modeling, and the phase diagram is obtained.  相似文献   

10.
Antidots of size 0.5 μm are prepared by patterning iron-nickel films with a focused ion beam. The magnetization distribution in antidot arrays is examined with Lorentz transmission electron microscopy. It is shown that one side of the array makes an angle of about 20° with the easy magnetic axis of the film. Magnetization reversal in the direction close to the easy magnetic axis starts with domain nucleation at the antidot edges that are perpendicular to the applied field and adjacent to the unpatterned region of the film, and propagates as the domain walls move. Magnetization reversal in the direction close to the hard magnetic axis starts with magnetization rotation outside the patterned region at the antidot edges and propagates as the domain walls execute a complicated motion. It is demonstrated that some areas between the edges of adjacent antidots can carry information bits. Results obtained are explained in terms of competition between the demagnetizing energy, energy of internal anisotropy, and misorientation effect. The feasibility of such structures as high-density storage elements is discussed.  相似文献   

11.
The dependence of the stability of a magnetic spiral domain in a film on the parameters of the film and its domain structure and on an external magnetic field is considered within a phenomenological model. The model allows one to explain a number of experimentally observed properties of dynamic spiral domains resulting from the process of self-organization of domains and domain walls in an iron-garnet film placed in an external ac magnetic field.  相似文献   

12.
The temperature dependence of the correction to electrical conductivity, Δσ, of Bi thin films (~100–200 Å thick) is measured in the region of the electron localization and interaction effects. The measurements are made without magnetic field and with magnetic fields both perpendicular and parallel to the film surface. Without magnetic field the dependence Δσ(In T) is determined by the total contribution from both effects. As the magnetic field increases, the localization contribution to Δσ decreases and at certain field values it is essentially absent so that the character of Δσ(In T) dependence is determined only by the interaction effect.  相似文献   

13.
In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiated by a nonfocused electron beam. Electron scattering and transport processes in the sample are simulated with the Monte Carlo and the finite-different time-domain(FDTD) methods, respectively. The properties of charge and discharge processes are presented by the evolution of internal currents, charge quantity, surface potential, and discharge time. Internal charge accumulation in the sample may reach saturation by primary electron(PE) irradiation providing the charge duration is enough. Internal free electrons will run off to the ground in the form of leakage current due to charge diffusion and drift during the discharge process after irradiation, while trapped electrons remain. The negative surface potential determined by the charging quantity decreases to its saturation in the charge process, and then increases in the discharge process. A larger thickness of the PMMA film will result in greater charge amount and surface potential in charge saturation and in final discharge state, while the electron mobility of the material has little effects on the final discharge state. Moreover,discharge time is less for smaller thickness or larger electron mobility. The presented results can be helpful for estimating and weakening the charging of insulating samples especially under the intermittent electron beam irradiation in related surface analysis or measurement.  相似文献   

14.
Novel electron-optical components and concepts aiming at improving the throughput and extending the applications of a low energy electron microscope (LEEM) have been developed. An immersion magnetic objective lens can substantially reduce e-e interactions and the associated blur, as electrons do not form a sharp crossover in the back-focal plane. The resulting limited field of view of the immersion objective lens in mirror mode can be eliminated by immersing the cathode of the electron gun in a magnetic field. A dual illumination beam approach is used to mitigate the charging effects when the LEEM is used to image insulating surfaces. The negative charging effect, created by a partially absorbed mirror beam, is compensated by the positive charging effect of the secondary beam with an electron yield exceeding 1. On substrates illuminated with a tilted beam near glancing incidence, large shadows are formed on even the smallest topographic features, easing their detection. On magnetic substrates, the magnetic flux leaking above the surface can be detected with tilted illumination and used to image domain walls with high contrast.  相似文献   

15.
The response of the electrons of an fcc copper (001) film to an external electrostatic field is calculated. In order to determine the distribution of the screening charge, the equations of the electron density-functional theory are solved self-consistently by an original method. The position of the “image plane,” which is involved in a correct asymptotic expression for the exchange-correlation potential in the vacuum region, is first determined when performing a quantum-mechanical calculation for an anisotropic crystal film. The nonlinear electron response is characterized by the evolution of the “center of gravity” of the induced charge, which is also investigated. The calculations take into account the crystal structure of the film, and the results differ essentially from the predictions of the “jelly” model.  相似文献   

16.
The electronic properties of a semiconductor bounded by an uneven surface representing an infinitely high potential barrier are investigated. The surface irregularities are produced by a Rayleigh acoustic wave. It is shown that, on the boundary of a semiconductor, surface electron states (waves) may arise whose dispersion laws are obtained under the conditions when conduction electrons are located either in or outside the field of the acoustic wave. Existence domains of surface electron states are found that are distinguished by their physical properties. These domains are separated by a band gap whose width is determined by the height of irregularities.  相似文献   

17.
Magnetic garnet films grown epitaxially on nonmagnetic garnet substrates exhibit a growth or stress-induced uniaxial anisotropy in addition to the cubic magnetocrystalline anisotropy associated with their crystal symmetry. When the uniaxial anisotropy is dominant over the cubic, such films exhibit stripe or bubble domain structures; even a small cubic anisotropy component can have a decisive effect on the behavior of the domains in applied fields. We report an experimental study of the quadistatic behavior of domains in fields applied to a (111) film in the film plane along (112) and (110). The experimental results are interpreted by a new theory that gives good agreement with the observed behavior, and yields an accurate measurement of the cubic and uniaxial anisotropy constants.The main qualitative features of the results are: In a (110) field, the walls are Neél walls perpendicular to the field. In a (112) field the walls are Bloch walls parallel to the field, the domain magnetization in adjacent stripes is not symmetrical about the film plane, and adjacent stripes are not of equal width; the domain period first shrinks and then expands with increasing field; and even though the applied field has no component perpendicular to the film plane, the film develops a net perpendicular magnetic moment.  相似文献   

18.
电子束照射下电介质/半导体样品的电子束感生电流(electron beam induced current,EBIC)是其电子显微检测的重要手段.结合数值模拟和实验测量,研究了高能电子束辐照下SiO2/Si薄膜的瞬态EBIC特性.基于Rutherford模型和快二次电子模型研究电子的散射过程,基于电流连续性方程计算电荷的输运、俘获和复合过程,获得了电荷分布、EBIC和透射电流瞬态特性以及束能和束流对它们的影响.结果表明,由于电子散射效应,自由电子密度沿入射方向逐渐减小.由于二次电子出射,净电荷密度呈现近表面为正、内部为负的特性,空间电场在表面附近为正而在样品内部为负,导致一些电子输运到基底以及一些出射二次电子返回表面.SiO2与Si界面处俘获电子导致界面附近负电荷密度高于周围区域.随电子束照射样品内部净电荷密度逐渐降低,带电强度减弱.同时,负电荷逐渐向基底输运,EBIC和样品电流逐渐增大,电场强度逐渐减小.由于样品带电强度较弱,表面出射电流和透射电流随照射基本保持恒定.EBIC、透射电流及表面出射电流均随束流呈现近似正比例关系.对于本文SiO2/Si薄膜,透射电流随束能的升高逐渐增大并接近于束流值,EBIC在束能约15 keV时呈现极大值.  相似文献   

19.
The numerical minimization of the total energy functional and the solution of the nonlinear Landau-Lifshitz equation have been performed exactly taking into account the fundamental (including dipole-dipole) interactions in terms of the two-dimensional magnetization distribution. The equilibrium structure, energy, mobility, and scenario of the dynamic transformation of the domain walls (in their non- steady-state motion) have been determined as a function of the film thickness b and external magnetic field H for two different ((010) and (110)) orientations of the surfaces of magnetically triaxial films. The range of film thicknesses, including the thickness b = b N, for which the Néel domain walls can be transformed into the Bloch domain walls, has been investigated. The phenomena of anisotropy of the domain-wall energy, the domain-wall mobility, and the period of dynamic transformations of the domain walls have been analyzed as a function of the film thickness b and external magnetic field H. The range of film thicknesses has been determined, in which the non-steady-state motion of the Néel domain walls is accompanied by the creation and annihilation of vortex-like structures despite the one-dimensional character of the magnetization distribution in these walls.  相似文献   

20.
A dense pulsed electron beam and nanosecond pulse length has been used to inject negative electric charge into various dielectric materials (single crystals, glasses, composites, plastics) for initiation of electron field emission from the dielectric into a vacuum. It has been shown that upon reaching a critical electric field in the bulk and at the dielectric surface there is intense critical electron emission. The local current density from the emission centers reaches a record value (for dielectrics) of the order of 106 A/cm2. The emission occurs in the form of a single gigantic pulse. The measured amplitude of the emission current averaged over the emitting surface is the same order of magnitude as the injected electron current: 10–1000 A. the emission current pulse lages behind the current pulse of the primary electron beam injected into the sample. The delay time is in the range 1–20 nsec and decreases with increasing current density of the injected beam. Direct experimental evidence is found for intense generation of carriers (band or quasifree electrons) in the near-surface layer of the dielectric in a strong electric field due to the Frenkel-Poole effect and collisional ionization of traps, usually various donor levels. This process greatly strengthens the field emission from the dielectric. It has been shown experimentally that the emission is nonuniform and is accompanied by “point bursts” at the surface of the dielectric and ionized plasma spikes in the vacuum interval. These spikes are the main reason that the transition of the field emission into “bursts” is critical, similar to the current which has been previously observed in metals and semiconductors. However there are a number of substantial differences. For example the critical field emission current density needed for the transition into “bursts” is three orders of magnitude less than for metals. If we provide sufficient electron current at the surface or from the bulk of the dielectric to the emission centers, then the critical emission is always accompanied by a vacuum discharge between the surface of the dielectric and a metallic collector. A detailed computer model of the processes in the dielectric during injection of a high-density electron beam has been developed which allows one to understand the complex physical pattern of the phenomenon. Tomsk Polytechnic University. Institute of High-Current Electronics, Siberian Section, Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 45–67, November, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号