首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We observed fifteen photofragments upon photolysis of propenal (acrolein, CH(2)CHCHO) at 193 nm using photofragment translational spectroscopy and selective vacuum-ultraviolet (VUV) photoionization. All the photoproducts arise from nine primary and two secondary dissociation pathways. We measured distributions of kinetic energy of products and determined branching ratios of dissociation channels. Dissociation to CH(2)CHCO + H and CH(2)CH + HCO are two major primary channels with equivalent branching ratios of 33%. The CH(2)CHCO fragment spontaneously decomposes to CH(2)CH + CO. A proportion of primary products CH(2)CH from the fission of bond C-C of propenal further decompose to CHCH + H but secondary dissociation HCO → H + CO is negligibly small. Binary dissociation to CH(2)CH(2) (or CH(3)CH) + CO and concerted three-body dissociation to C(2)H(2) + CO + H(2) have equivalent branching ratios of 14%-15%. The other channels have individual branching ratios of ~1%. The production of HCCO + CH(3) indicates the formation of intermediate methyl ketene (CH(3)CHCO) and the production of CH(2)CCH + OH and CH(2)CC + H(2)O indicate the formation of intermediate hydroxyl propadiene (CH(2)CCHOH) from isomerization of propenal. Distributions of kinetic energy release and dissociation mechanisms are discussed. This work provides a complete look and profound insight into the multi-channel dissociation mechanisms of propenal. The combination of a molecular beam apparatus and synchrotron VUV ionization allowed us to untangle the complex mechanisms of nine primary and two secondary dissociation channels.  相似文献   

2.
Photodissociation of pyrimidine at 193 and 248 nm was investigated separately using vacuum ultraviolet photoionization at 118.4 and 88.6 nm and multimass ion imaging techniques. Six dissociation channels were observed at 193 nm, including C4N2H4 --> C4N2H3 + H and five ring opening dissociation channels, C4N2H4 --> C3NH3 + HCN, C4N2H4 --> 2C2NH2, C4N2H4 --> CH3N + C3NH, C4N2H4 --> C4NH2 + NH2, and C4N2H4 --> CH2N + C3NH2. Only the first four channels were observed at 248 nm. Photofragment translational energy distributions and dissociation rates indicate that dissociation occurs in the ground electronic state after internal conversion at both wavelengths. The dissociation rates were found to be >5 x 10(7) and 1 x 10(6) s(-1) at 193 and 248 nm, respectively. Comparison with the potential energies from ab initio calculations have been made.  相似文献   

3.
This work is a study of the competition between the two unimolecular reaction channels available to the vinoxy radical (CH(2)CHO), C-H fission to form H+ketene, and isomerization to the acetyl radical (CH(3)CO) followed by C-C fission to form CH(3) + CO. Chloroacetaldehyde (CH(2)ClCHO) was used as a photolytic precursor to the vinoxy radical in its ground state; photodissociation of chloroacetaldehyde at 193 nm produces vinoxy radicals with internal energies spanning the G3//B3LYP calculated barriers to the two available unimolecular reaction channels. The onset of the CH(3) + CO channel, via isomerization to the acetyl radical, was found to occur at an internal energy of 41 +/- 2 kcal/mol, agreeing well with our calculated isomerization barrier of 40.8 kcal/mol. Branching to the H+ketene channel was too small to be detected; we conclude that the branching to the H+ketene channel must be at least a factor of 200 lower than what is predicted by a RRKM analysis based on our electronic structure calculations. This dramatic result may be explained in part by the presence of a conical intersection at planar geometries along the reaction coordinate leading to H+ketene, which results in electronically nonadiabatic recrossing of the transition state.  相似文献   

4.
The photodissociation dynamics of the tert-butyl radical (t-C(4)H(9)) were investigated using photofragment translational spectroscopy. The tert-butyl radical was produced from flash pyrolysis of azo-tert-butane and dissociated at 248 nm. Two distinct channels of approximately equal importance were identified: dissociation to H + 2-methylpropene, and CH(3) + dimethylcarbene. Neither the translational energy distributions that describe these two channels nor the product branching ratio are consistent with statistical dissociation on the ground state, and instead favor a mechanism taking place on excited state surfaces.  相似文献   

5.
We investigated the dynamics of isomerization and multi-channel dissociation of propenal (CH(2)CHCHO), methyl ketene (CH(3)CHCO), hydroxyl propadiene (CH(2)CH(2)CHOH), and hydroxyl cyclopropene (cyclic-C(3)H(3)-OH) in the ground potential-energy surface using quantum-chemical calculations. Optimized structures and vibrational frequencies of molecular species were computed with method B3LYP∕6-311G(d,p). Total energies of molecules at optimized structures were computed at the CCSD(T)∕6-311+G(3df,2p) level of theory. We established the potential-energy surface for decomposition to CH(2)CHCO + H, CH(2)CH + HCO, CH(2)CH(2)∕CH(3)CH + CO, CHCH∕CH(2)C + H(2)CO, CHCCHO∕CH(2)CCO + H(2), CHCH + CO + H(2), CH(3) + HCCO, CH(2)CCH + OH, and CH(2)CC∕cyclic-C(3)H(2) + H(2)O. Microcanonical rate coefficients of various reactions of trans-propenal with internal energies 148 and 182 kcal mol(-1) were calculated using Rice-Ramsperger-Kassel-Marcus and Variational transition state theories. Product branching ratios were derivable using numerical integration of kinetic master equations and the steady-state approximation. The concerted three-body dissociation of trans-propenal to fragments C(2)H(2) + CO + H(2) is the prevailing channel in present calculations. In contrast, C(3)H(3)O + H, C(2)H(3) + HCO and C(2)H(4) + CO were identified as major channels in the photolysis of trans-propenal. The discrepancy between calculations and experiments in product branching ratios indicates that the three major photodissociation channels occur mainly on an excited potential-energy surface whereas the other channels occur mainly on the ground potential-energy surface. This work provides profound insight in the mechanisms of isomerization and multichannel dissociation of the system C(3)H(4)O.  相似文献   

6.
Photodissociation dynamics of 1,2-butadiene at 157 nm   总被引:1,自引:0,他引:1  
Photodissociation dynamics of 1,2-butadiene at 157 nm has been investigated using a molecular beam apparatus based on photoionization using vacuum ultraviolet synchrotron radiation. Six dissociation pathways have been observed. The observed channels are C4H5+H, C4H4+H2, C3H3+CH3, C2H3+C2H3, C2H4+C2H2, and C4H4+H+H. Among all the dissociation channels, the C3H3+CH3 channel is found to be the dominant process. The product kinetic energy distributions of all dissociation channels have been determined from simulating the experimental time-of-flight spectra. Relative branching ratios for all observed dissociation channels were also estimated based on all detected products.  相似文献   

7.
The photodissociation of jet-cooled alpha-fluorotoluene and 4-fluorotoluene at 193 and 248 nm was studied using vacuum ultraviolet (vuv) photoionization/multimass ion imaging techniques as well as electron impact ionization/photofragment translational spectroscopy. Four dissociation channels were observed for alpha-fluorotoluene at both 193 and 248 nm, including two major channels C6H5CH2F-->C6H5CH2 (or C7H7)+F and C6H5CH2F-->C6H5CH (or C7H6)+HF and two minor channels C6H5CH2F-->C6H5CHF+H and C6H5CH2F-->C6H5+CH2F. The vuv wavelength dependence of the C7H7 fragment photoionization spectra indicates that at least part of the F atom elimination channel results from the isomerization of alpha-fluorotoluene to a seven-membered ring prior to dissociation. Dissociation channels of 4-fluorotoluene at 193 nm include two major channels C6H4FCH3-->C6H4FCH2+H and C6H4FCH3-->C6H4F+CH3 and two minor channels C6H4FCH3-->C6H5CH2 (or C7H7)+F and C6H4FCH3-->C6H5CH (or C7H6)+HF. The dissociation rates for alpha-fluorotoluene at 193 and 248 nm are 3.3 x 10(7) and 5.6 x 10(5) s(-1), respectively. The dissociation rate for 4-fluorotoluene at 193 nm is 1.0 x 10(6) s(-1). An ab initio calculation demonstrates that the barrier height for isomerization from alpha-fluorotoluene to a seven-membered ring isomer is much lower than that from 4-fluorotoluene to a seven-membered ring isomer. The experimental observed differences of dissociation rates and relative branching ratios between alpha-fluorotoluene and 4-fluorotoluene may be explained by the differences in the six-membered ring to seven-membered ring isomerization barrier heights, F atom elimination threshold, and HF elimination threshold between alpha-fluorotoluene and 4-fluorotoluene.  相似文献   

8.
Photodissociation of pyridine, 2,6-d2-pyridine, and d5-pyridine at 193 and 248 nm was investigated separately using multimass ion imaging techniques. Six dissociation channels were observed at 193 nm, including C5NH5 --> C5NH4 + H (10%) and five ring opening dissociation channels, C5NH5 --> C4H4 + HCN, C5NH5 --> C3H3 + C2NH2, C5NH5 --> C2H4 +C3NH, C5NH5 --> C4NH2 + CH3 (14%), and C5NH5 --> C2H2 + C3NH3. Extensive H and D atom exchanges of 2,6-d2-pyridine prior to dissociation were observed. Photofragment translational energy distributions and dissociation rates indicate that dissociation occurs in the ground electronic state after internal conversion. The dissociation rate of pyridine excited by 248-nm photons was too slow to be measured, and the upper limit of the dissociation rate was estimated to be 2x10(3) s(-1). Comparisons with potential energies obtained from ab initio calculations and dissociation rates obtained from the Rice-Ramsperger-Kassel-Marcus theory have been made.  相似文献   

9.
The photodissociation spectroscopy and dynamics resulting from excitation of the B (2)A(")<--X (2)A(") transition of CH(2)CFO have been examined using fast beam photofragment translational spectroscopy. The photofragment yield spectrum reveals vibrationally resolved structure between 29 870 and 38 800 cm(-1), extending approximately 6000 cm(-1) higher in energy than previously reported in a laser-induced fluorescence excitation spectrum. At all photon energies investigated, only the CH(2)F+CO and HCCO+HF fragment channels are observed. Both product channels yield photofragment translational energy distributions that are characteristic of a decay mechanism with a barrier to dissociation. Using the barrier impulsive model, it is shown that fragmentation to CH(2)F+CO products occurs on the ground state potential energy surface with the isomerization barrier between CH(2)CFO and CH(2)FCO governing the observed translational energy distributions.  相似文献   

10.
The work presented here uses photofragment translational spectroscopy to investigate the primary and secondary dissociation channels of acryloyl chloride (CH2==CHCOCl) excited at 193 nm. Three primary channels were observed. Two C-Cl fission channels occur, one producing fragments with high kinetic recoil energies and the other producing fragments with low translational energies. These channels produced nascent CH2CHCO radicals with internal energies ranging from 23 to 66 kcal/mol for the high-translational-energy channel and from 50 to 68 kcal/mol for the low-translational-energy channel. We found that all nascent CH2CHCO radicals were unstable to CH2CH + CO formation, in agreement with the G3//B3LYP barrier height of 22.4 kcal/mol to within experimental and computational uncertainties. The third primary channel is HCl elimination. All of the nascent CH2CCO coproducts were found to have enough internal energy to dissociate, producing CH2C: + CO, in qualitative agreement with the G3//B3LYP barrier of 39.5 kcal/mol. We derive from the experimental results an upper limit of 23 +/- 3 kcal/mol for the zero-point-corrected barrier to the unimolecular dissociation of the CH2CHCO radical to form CH2CH + CO.  相似文献   

11.
The photodissociation dynamics of 1,3-butadiene at 193 nm have been investigated with photofragment translational spectroscopy coupled with product photoionization using tunable VUV synchrotron radiation. Five product channels are evident from this study: C(4)H(5) + H, C(3)H(3) + CH(3), C(2)H(3) + C(2)H(3), C(4)H(4) + H(2), and C(2)H(4) + C(2)H(2). The translational energy (P(E(T))) distributions suggest that these channels result from internal conversion to the ground electronic state followed by dissociation. To investigate the dissociation dynamics in more detail, further studies were carried out using 1,3-butadiene-1,1,4,4-d(4). Branching ratios were determined for the channels listed above, as well as relative branching ratios for the isotopomeric species produced from 1,3-butadiene-1,1,4,4-d(4) dissociation. C(3)H(3) + CH(3) is found to be the dominant channel, followed by C(4)H(5) + H and C(2)H(4) + C(2)H(2), for which the yields are approximately equal. The dominance of the C(3)H(3) + CH(3) channel shows that isomerization to 1,2-butadiene followed by dissociation is facile.  相似文献   

12.
The crossed molecular beam scattering technique with soft electron ionization (EI) is used to disentangle the complex dynamics of the polyatomic O(3P) + C2H4 reaction, which is of great relevance in combustion and atmospheric chemistry. Exploiting the newly developed capability of attaining universal product detection by using soft EI, at a collision energy of 54.0 kJ mol(-1), five different primary products have been identified, which correspond to the five exoergic competing channels leading to CH2CHO(vinoxy) + H, CH3CO(acetyl) + H, CH3(methyl) + HCO(formyl), CH2(methylene) + HCHO(formaldehyde), and CH2CO(ketene) + H2. From laboratory product angular and velocity distributions, center-of-mass product angular and translational energy distributions and the relative branching ratios for each channel have been obtained, affording an unprecedented characterization of this important reaction.  相似文献   

13.
We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.  相似文献   

14.
The product distributions of the excimer laser photolysis of ketene (CH2CO) and ethyl ethynyl ether (C2H5OCCH) at lambda = 193.3 nm (ArF) were studied using a time-of-flight mass spectrometer (TOFMS) as an analytical tool. Ketene was photolyzed in bath gases consisting of mixtures of He and H2/D2 at various mixing ratios at constant total pressures of 4 Torr and temperature of about 300 K. Singlet methylene (1CH2) produced in the photolysis of ketene was almost instantaneously converted either to triplet methylene (3CH2) or to methyl radicals in collisions with He and H2 or D2. By extrapolating the methyl and methylene signals to zero time after photolysis, initial concentrations of these radicals were obtained. Analyzing the initial 3CH2 and CH3 concentrations as functions of hydrogen-to-helium ratios as well as simulating the observed traces of reactant and product species resulted in 1CH2 + CO (66 +/- 8)%, as the main product channel of the ketene photolysis with smaller contributions from HCCO + H (17 +/- 7)% and 3CH2 + CO (6 +/- 9)%. Hydrogen atoms, acetylene, ethylene, ethyl, and ketenyl radicals, and small amounts of ketene were observed as primary products of the ethyl ethynyl ether photolysis. Quantification of C2H2, C2H4, C2H5, and CH2CO product leads to a HCCO yield of (91 +/- 14)%.  相似文献   

15.
The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).  相似文献   

16.
We present a comprehensive investigation of the dissociation dynamics following photoexcitation of 1,1-dichloroacetone (CH(3)COCHCl(2)) at 193 nm. Two major dissociation channels are observed: cleavage of a C-Cl bond to form CH(3)C(O)CHCl + Cl and elimination of HCl. The branching between these reaction channels is roughly 9:1. The recoil kinetic energy distributions for both C-Cl fission and HCl elimination are bimodal. The former suggests that some of the radicals are formed in an excited electronic state. A portion of the CH(3)C(O)CHCl photoproducts undergo secondary dissociation to give CH(3) + C(O)CHCl. Photoelimination of Cl(2) is not a significant product channel. A primary C-C bond fission channel to give CH(3)CO + CHCl(2) may be present, but this signal may also be due to a secondary dissociation. Data from photofragment translational spectroscopy with electron impact and photoionization detection, velocity map ion imaging, and UV-visible absorption spectroscopy are presented, along with G3//B3LYP calculations of the bond dissociation energetics.  相似文献   

17.
A vacuum ultraviolet photoionization mass spectrometric study of acetone   总被引:1,自引:0,他引:1  
The photoionization and dissociative photoionization of acetone have been studied at the photon energy range of 8-20 eV. Photoionization efficiency spectra for ions CH3COCH3+, CH3+, C2H3+, C3H3+, C3H5+, CH(2-)CO+, CH3CO+, C3H4O+, and CH3COCH2+ have been measured. In addition, the energetics of the dissociative photoionization has been examined by ab initio Gaussian-3 (G3) calculations. The computational results are useful in establishing the dissociation channels near the ionization thresholds. With the help of G3 results, the dissociation channels for the formation of the fragment ions CH3CO+, CH2CO+, CH3+, C3H3+, and CH3COCH2+ have been established. The G3 results are in fair to excellent agreement with the experimental data.  相似文献   

18.
The photodissociation dynamics of CBr4 at 267 nm has been studied using time of flight (TOF) mass spectrometry and ion velocity imaging techniques. The photochemical products are detected with resonance enhanced multiphoton ionization (REMPI) as well as single-photon vacuum ultraviolet ionization at 118 nm. REMPI at 266.65 and 266.71 nm was used to detect the ground Br(2P32) and spin-orbit excited Br(2P12) atoms, respectively. The translational energy and angular distributions are consistent with direct dissociation from an excited triplet state and indirect dissociation from high vibrational levels on the singlet ground state surface. Br2+ ions are also observed in the TOF spectra with a focused 267 nm laser. The counter fragment, CBr2+, is observed when this photolysis laser is unfocused, and photons at 118 nm are used to ionize the radical products. The translational energy distributions of the CBr2+ and Br2+ products can be momentum matched, which indicates that molecular Br2 elimination is one of the primary dissociation channels.  相似文献   

19.
This work determines the dissociation barrier height for CH2CHCO --> CH2CH + CO using two-dimensional product velocity map imaging. The CH2CHCO radical is prepared under collision-free conditions from C-Cl bond fission in the photodissociation of acryloyl chloride at 235 nm. The nascent CH2CHCO radicals that do not dissociate to CH2CH + CO, about 73% of all the radicals produced, are detected using 157-nm photoionization. The Cl(2P(3/2)) and Cl(2P(1/2)) atomic fragments, momentum matched to both the stable and unstable radicals, are detected state selectively by resonance-enhanced multiphoton ionization at 235 nm. By comparing the total translational energy release distribution P(E(T)) derived from the measured recoil velocities of the Cl atoms with that derived from the momentum-matched radical cophotofragments which do not dissociate, the energy threshold at which the CH2CHCO radicals begin to dissociate is determined. Based on this energy threshold and conservation of energy, and using calculated C-Cl bond energies for the precursor to produce CH2CHC*O or C*H2CHCO, respectively, we have determined the forward dissociation barriers for the radical to dissociate to vinyl + CO. The experimentally determined barrier for CH2CHC*O --> CH2CH + CO is 21+/-2 kcal mol(-1), and the computed energy difference between the CH2CHC*O and the C*H2CHCO forms of the radical gives the corresponding barrier for C*H2CHCO --> CH2CH + CO to be 23+/-2 kcal mol(-1). This experimental determination is compared with predictions from electronic structure methods, including coupled-cluster, density-functional, and composite Gaussian-3-based methods. The comparison shows that density-functional theory predicts too low an energy for the C*H2CHCO radical, and thus too high a barrier energy, whereas both the Gaussian-3 and the coupled-cluster methods yield predictions in good agreement with experiment. The experiment also shows that acryloyl chloride can be used as a photolytic precursor at 235 nm of thermodynamically stable CH2CHC*O radicals, most with an internal energy distribution ranging from approximately 3 to approximately 21 kcal mol(-1). We discuss the results with respect to the prior work on the O(3P) + propargyl reaction and the analogous O(3P) + allyl system.  相似文献   

20.
Photodissociation dynamics of phenol   总被引:1,自引:0,他引:1  
The photodissociation of phenol at 193 and 248 nm was studied using multimass ion-imaging techniques and step-scan time-resolved Fourier-transform spectroscopy. The major dissociation channels at 193 nm include cleavage of the OH bond, elimination of CO, and elimination of H(2)O. Only the former two channels are observed at 248 nm. The translational energy distribution shows that H-atom elimination occurs in both the electronically excited and ground states, but elimination of CO or H(2)O occurs in the electronic ground state. Rotationally resolved emission spectra of CO (1 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号