首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solitary flexural waves on a supersonic domain wall in yttrium orthoferrite are observed and investigated. These waves have a sharp leading edge and a protracted trailing edge, reminiscent of the waves accompanying moving vertical Bloch lines in iron garnet films. The total velocity of the solitary flexural waves in yttrium orthoferrites for all observed amplitudes equals the maximum velocity of the domain walls. Two solitary waves with identical amplitudes colliding head-on are annihilated. The waves possess topological charges, and they move and form dynamic profiles under the influence of gyroscopic forces. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 10, 760–765 (25 May 1997)  相似文献   

2.
The moving antiferromagnetic vortices are accompanied by solitary deflection waves. These waves allow to investigate generation and nonlinear dynamics of the antiferromagnetic vortices on the moving domain wall with the help of the two- and three-fold digital high speed photography. On the quasi-relativistic domain wall the vortex dynamics is quasi-relativistic with the limiting velocity c=20 km/s, which is equal to the spin-wave velocity. The solitary deflection waves dynamics can be explained assuming existence of the gyroscopic force. A theory for the gyroscopic force in the orthoferrite domain wall is elaborating by A.K. Zvezdin et al. currently. We present a comparison of the theoretical and experimental results on the dynamics of the solitary deflection waves, which accompany the antiferromagnetic vortices in the domain wall of orthoferrites.  相似文献   

3.
Elastic vibrations have been experimentally found induced by a moving domain wall in a sample of yttrium orthoferrite 10−4 m thick. Calculations have been carried out to suggest their relevance to flexural Lamb waves.  相似文献   

4.
Reflection of solitary flexural waves propagating in a supersonic domain wall of yttrium orthoferrite from the domain wall part moving with the transverse-sound velocity is observed experimentally. This observation confirms that such a reflection of a solitary flexural wave leads to a change in the sign of the topological charge of the antiferromagnetic vortex accompanied by this wave, which proves a direct relationship between these two objects.  相似文献   

5.
An exact solution of the equation for spin waves propagating along the normal to the domain wall is derived for a ferromagnet with a 180° domain wall moving at constant speed, and the radiation of spin waves in rf fields is investigated.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 66–69, April, 1979.  相似文献   

6.
The phenomenon of energy transfer, both monotonic and oscillating, between the fundamental and higher harmonics of standing acoustic waves is observed during the laser generation of sound in YFeO3 crystals. An analogous phenomenon for traveling light waves is well known in nonlinear optics. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 12, 789–792 (25 December 1999)  相似文献   

7.
8.
The stable generation of pairs of antiferromagnetic vortices at a domain wall moving at a velocity of 12 km/s is investigated at the instant it passes through a defect in a thin plate of yttrium orthoferrite. The velocities of a vortex and an antivortex moving in opposite directions along the domain wall and being accompanied by solitary flexural waves are ±16 km/s. The total velocity of antiferromagnetic vortices is close to the maximum velocity of the domain wall, 20 km/s. Such a high velocity can only be due to the action of a quite large gyroscopic force. An external dc magnetic field (±400 Oe) applied along the b axis of the orthoferrite affects this velocity insignificantly. The effective magnetic field that violates the Lorentz invariance of the dynamics considerably exceeds this value.  相似文献   

9.
Solitary bending waves have been observed on domain boundaries of Néel type in wafers of yttrium orthoferrite, having a very sharp leading edge and an extended trailing edge and offset as a whole from the domain boundary and moving with high speeds close to the limiting velocity. Head-on collisions of two such waves of the same amplitude lead to their complete annihilation. Analogous collisions of two such waves, but of different amplitudes, lead to the appearance of a wave with the difference amplitude moving in the same direction as the wave of larger amplitude. The solitary bending waves investigated in this study appear to move under the action of gyroscopic forces acting on magnetic vortices on domain boundaries in yttrium orthoferrite, analogous to vertical Bloch lines with departure of the magnetization vector from the ac plane. From equality of the gyroscopic force with the friction force acting on the leading edge of the solitary bending wave we have estimated the amplitudes of these waves and the magnitudes of the topological charges of the magnetic vortices. Zh. éksp. Teor. Fiz. 115, 2160–2169 (June 1999)  相似文献   

10.
The total velocity of solitary flexural waves nonlinearly increases with an increase in the velocity of domain walls and becomes saturated at a level of 20 km s?1; the smaller the wave amplitude, the more rapidly saturation occurs. Counter collisions of solitary flexural waves lead to the formation of a single wave with a difference amplitude moving in the same direction as the wave with a larger amplitude. The experimental results confirm that solitary flexural waves accompany antiferromagnetic vortices at domain walls in yttrium orthoferrite.  相似文献   

11.
The specific features of the reflection and transmission of light waves through a planar domain wall in a ferrodielectric are investigated with due regard for the linear and quadratic magneto-optical coupling. The polarization and intensity-related characteristics of the reflected and transmitted light waves are determined at an arbitrary angle of incidence of a normal mode of the uniformly magnetized medium.  相似文献   

12.
13.
It is established experimentally that the magnetic field directed along the b axis has little effect on the velocities of antiferromagnetic vortices in the domain boundary (DB) of yttrium orthoferrite and fails to explain the presence of an appreciable gyroscopic force acting on these vortices. This force is induced by the dynamic canting of magnetic sublattices proportional to the DB velocity. Due to the canting, the velocities of antiferromagnetic vortices depend initially quadratically on the DB velocity, as was experimentally found in this work. The dynamics of antiferromagnetic vortices in the yttrium orthoferrite DBs is gyroscopic and quasi-relativistic, with the limiting velocity of 20 km/s equal to the velocity of spin waves at the linear portion of their dispersion curve.  相似文献   

14.
15.
The boundary-value problem of the interaction of a plane monochromatic shear wave with a moving Bloch wall in an iron garnet crystal is solved in the framework of the nonexchange magnetostatic approximation on the basis of the method of phase invariants for wave problems with moving boundaries. For a shear wave incident on the domain wall, the possibility of the reflectionless birefringence is demonstrated. Numerical results illustrating the resonance properties of the magnetic subsystem are presented. It is established that, at the upper bound of the reflectionless birefringence range, the interaction of the shear wave with the domain wall manifests itself as a degenerate resonance with the solution in the form of two combined antiphase, collinearly propagating shear waves of infinitely large amplitudes, which form a zero resulting field.  相似文献   

16.
It is demonstrated that the quasi-relativistic dynamics of antiferromagnetic vortices in a quasi-relativistic domain boundary of yttrium orthoferrite are caused by the unusually strong gyroscopic force.  相似文献   

17.
The dispersion properties of electroacoustic wave modes confined by a superlattice of uniformly moving 180° domain walls in a tetragonal ferroelectric crystal are considered. It is shown that the manifold of partial electroacoustic interfacial waves in the lattice is restricted to the first allowed band, the configuration of which in the plane of spectral variables can significantly vary under the action of the moving domain walls.  相似文献   

18.
A method is proposed for describing a moving film vortex structure and its interaction with surface acoustic waves. It is shown that the moving vortex structure can amplify (generate) surface acoustic waves. In contrast to a similar effect in semiconductor films, this effect can appear when the velocity of the vortex structure is much lower than the velocity of the surface acoustic waves. A unidirectional collective mode is shown to exist in the moving vortex structure. This mode gives rise to an acoustic analogue of the diode effect that is resonant in the velocity of the vortex structure. This acoustic effect is manifested as an anomalous attenuation of the surface acoustic waves in the direction of the vortex-structure motion and as the absence of this attenuation for the propagation in the opposite direction.  相似文献   

19.
20.
The method of generation of antiferromagnetic vortices on the supersound domain wall in the orthoferrites was proposed. Moving antiferromagnetic vortices were accompanied by the solitary deflection waves. These waves were used for investigation of generation and nonlinear dynamics of the antiferromagnetic vortices on a moving domain wall with the help of two- and three-fold digital high-speed photography and Faraday rotation in the orthoferrites plates cut perpendicular to the optical axis. The full velocity of antiferromagnetic vortex nonlinearly increases and saturates on the spin velocity level c. The vortices with smallest topological charges saturate earlier than with big one. The vortices velocity along the domain wall u increases up to the maximum and goes to the dependence u2+v2=c2. Vortex dynamics is quasirelativistic on quasirelativistic domain wall. The theory of gyroscopic force in the domain wall of orthoferrites was elaborated by Zvezdin et al. and was confirmed our earlier experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号