首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Modulation masking: effects of modulation frequency, depth, and phase   总被引:1,自引:0,他引:1  
Modulation thresholds were measured for a sinusoidally amplitude-modulated (SAM) broadband noise in the presence of a SAM broadband background noise with a modulation depth (mm) of 0.00, 0.25, or 0.50, where the condition mm = 0.00 corresponds to standard (unmasked) modulation detection. The modulation frequency of the masker was 4, 16, or 64 Hz; the modulation frequency of the signal ranged from 2-512 Hz. The greatest amount of modulation masking (masked threshold minus unmasked threshold) typically occurred when the signal frequency was near the masker frequency. The modulation masking patterns (amount of modulation masking versus signal frequency) for the 4-Hz masker were low pass, whereas the patterns for the 16- and 64-Hz maskers were somewhat bandpass (although not strictly so). In general, the greater the modulation depth of the masker, the greater the amount of modulation masking (although this trend was reversed for the 4-Hz masker at high signal frequencies). These modulation-masking data suggest that there are channels in the auditory system which are tuned for the detection of modulation frequency, much like there are channels (critical bands or auditory filters) tuned for the detection of spectral frequency.  相似文献   

2.
The shape of the auditory filter was calculated from binaural masking experiments. Two different types of maskers were used in the study, a masker that was interaurally in phase at all frequencies (No), and a masker with an interaural phase difference of 0 below 500 Hz and of pi above 500 Hz. The test-signal frequency varied between 200 and 800 Hz, and the test signal was presented either monaurally (Sm) or binaurally in antiphase (S pi). By comparing the masked thresholds from the two experimental conditions, the following conclusion can be drawn: The threshold of the test signal is only affected by the masker phase within a narrow frequency range around the test frequency. Thus, for test-signal frequencies well above or below 500 Hz, no influence of the phase transition on the BMLD is observed, and normal masked thresholds for No and N pi maskers are obtained. For test frequencies around 500 Hz, the step in interaural phase difference leads to a decrease in the interaural correlation of the masker within the critical band around the test-signal frequency. This results in strong threshold changes for both monaural and binaural signals. A calculation of the auditory filter shape from the masked threshold values was performed under the assumption that the masked threshold is only dependent on the interaural cross correlation of the masker within the filter band. Using the formula of the EC theory for the relation between masker correlation and BMLD, the experimental data are well described by a trapezoidal filter with an equivalent rectangular bandwidth of 80 to 84 Hz.  相似文献   

3.
Detection thresholds for a tone in an unfamiliar tonal pattern can be greatly elevated under conditions of masker uncertainty [Neff and Green, Percept. Psychophys. 41, 409-415 (1987); Oh and Lutfi, J. Acoust. Soc. Am. 101, 3148 (1997)]. The present experiment was undertaken to determine whether harmonicity of masker tones can reduce the detrimental effect of masker uncertainty. Inharmonic maskers were comprised of m=2-49 frequency components selected at random on each presentation within 100-10000 Hz, excluding frequencies between 920-1080. Harmonic maskers were comprised of frequency components selected at random within this same range, but constrained to have a fundamental frequency of 200 Hz. For inharmonic maskers the signal was a 1000-Hz tone. For harmonic-maskers the signal was a tone whose frequency was either harmonically (1000 Hz) or inharmonically (1047 Hz) related to the masker. In all conditions the amount of masking was greatest for m = 20-40 components. At this point, harmonic maskers with harmonic signal produced an average of 9-12 dB less masking than inharmonic maskers. Harmonic maskers with inharmonic signal produced an average of 16-20 dB less masking.  相似文献   

4.
When a signal is higher in frequency than a narrow-band masker, thresholds are lower when the masker envelope fluctuates than when it is constant. This article investigates the cues used to achieve the lower thresholds, and the factors that influence the amount of threshold reduction. In experiment I the masker was either a sinusoid (constant envelope) or a pair of equal-amplitude sinusoids (fluctuating envelope) centered at the same frequency as the single sinusoid (250, 1000, 3000, or 5275 Hz). The signal frequency was 1.8 times the masker frequency. At all center frequencies, thresholds were lower for the two-tone masker than for the sinusoidal masker, but the effect was smaller at the highest and lowest frequencies. The reduced effect at high frequencies is attributed to the loss of a cue related to phase locking in the auditory nerve. The reduced effect at low frequencies can be partly explained by reduced slopes of the growth-of-masking functions. In experiment II the masker was a sinusoid amplitude modulated at an 8-Hz rate. Masker and signal frequencies were the same as for the first experiment. Randomizing the modulation depth between the two halves of a forced-choice trial had no effect on thresholds, indicating that changes in modulation depth are not used as a cue for signal detection. Thresholds in the modulated masker were higher than would be predicted if they were determined only by the masker level at minima in the envelope, and the threshold reduction produced by modulating the master envelope was less at 250 Hz than at higher frequencies. Experiments III and IV reveal two factors that contribute to the reduced release from masking at low frequencies: The rate of increase of masked threshold with decreasing duration is greater at 250 Hz than at 1000 Hz; the amount of forward masking, relative to simultaneous masking, is greater at 250 Hz than at 1000 Hz. The results are discussed in terms of the relative importance of across-channel cues and within-channel cues.  相似文献   

5.
Responses of chinchilla auditory-nerve fibers were measured for stimulus conditions analogous to those in which psychophysical release from masking has been observed in humans. The maskers were two equal power, narrow-band noise stimuli with different amplitude envelopes. The neurons in the sample fell into three groups that resolved the maskers' envelopes with varying degrees of accuracy. The boundaries of these groups were not sharply delineated by characteristic frequency (CF) but were dependent on the relationship between the masker level and the neurons' thresholds at the masker frequency. For the neurons that best preserved the maskers' envelope fluctuations, a neural release from masking was observed; rate-based neural masked thresholds were higher for the masker with the least fluctuating envelope. The results suggest that neural and psychophysical release from masking arises because the probe evokes larger rate changes, relative to the background response to the masker, during periods of low masker energy. Between two otherwise equivalent maskers, the one with the periods of lowest energy will produce the lower masked thresholds because rate changes are larger and more detectable.  相似文献   

6.
Auditory filter shapes were determined for the chinchilla using the notched-noise technique [R. D. Patterson, J. Acoust. Soc. Am. 59, 640-654 (1976)]. Here, the derivative of the curve relating threshold to masker gap width outlines the shape of the auditory filter. Three chinchillas were trained, using positive reinforcement techniques, to provide forward masked thresholds at 1.0 and 10.0 kHz, at three masker spectrum levels. Unexpectedly, the threshold curves contained inflection points and regions of constant or nonmonotonic changes in threshold, so that the derived filters contained dips in their central passbands. Nonmonotonic variations in threshold may be discerned in human threshold versus notch width functions of previously published studies, suggesting that the two types of data are qualitatively similar. The filters computed from the chinchilla data widened with increasing masker level and were more broadly tuned than those obtained in humans. The physiological response to each frequency component of any stimulus is likely a combination of excitation and suppression. Hence, one cannot predict masked threshold from the acoustic spectra of the maskers used here since they differ from their internal representations. Thus the threshold versus notch width function probably reflects the operation of both an auditory filter and a nonlinearity.  相似文献   

7.
A common metric of auditory temporal processing is the difference in the threshold for a pure-tone signal masked by either unmodulated or amplitude-modulated noise. This technique may be viewed as a modification of the masking period pattern technique. Such measurements have been proposed as an efficient means of estimating auditory temporal resolution in a clinical setting, although in many cases threshold differences may reflect additional spectro-temporal processes. The primary purpose of the present experiment was to examine interactions among signal frequency and masker bandwidth and the effects of modulation frequency on modified masking period patterns. The results revealed unmodulated-modulated threshold differences that increased with increasing masker bandwidth and decreased with increasing modulation frequency. There was little effect of signal frequency for narrow-band noise maskers that were equal in absolute bandwidth across frequency. However, unmodulated-modulated threshold differences increased substantially with increasing signal frequency for bandwidths proportional to the signal frequency and for wideband maskers. Although the results are interpreted in terms of a combination of both within-channel and across-channel cues, the specific contributions of these cues in particular conditions are difficult to ascertain. Because modified masking period patterns depend strongly upon a number of specific stimulus parameters, and because it is difficult to determine with any precision the underlying perceptual processes, this technique is not recommended for use as a clinical measure of auditory temporal processing.  相似文献   

8.
These experiments on across-channel masking (ACM) and comodulation masking release (CMR) were designed to extend the work of Grose and Hall [J. Acoust. Soc. Am. 85, 1276-1284 (1989)] on CMR. They investigated the effect of the temporal position of a brief 700-Hz signal relative to the modulation cycle of a 700-Hz masker 100% sinusoidally amplitude modulated (SAM) at a 10-Hz rate, which was either presented alone (reference masker) or formed part of a masker consisting of the 3rd to 11th harmonics of a 100-Hz fundamental. In the harmonic maskers, each harmonic was either SAM with the same 10-Hz modulator phase (comodulated masker) or with a shift in modulator phase of 90 degrees for each successive harmonic (phase-incoherent masker). When the signal was presented at the dips of the envelope of the 700-Hz component, the comodulated masker gave lower thresholds than the reference masker, while the phase-incoherent masker gave higher thresholds, i.e., a CMR was observed. No CMR was found when the signal was presented at the peaks of the envelope. In experiment 1, we replicated the experiment of Grose and Hall, but with an additional condition in which the 600- and 800-Hz components were removed from the masker, in order to investigate the role of within-channel masking effects. The results were similar to those of Grose and Hall. In experiment 2, the signal was added at the peaks of the envelope of the 700-Hz component, but in antiphase to the carrier of that component and at a level chosen to transform the peaks into dips. No CMR was found. Rather, performance was worse for both the comodulated and phase-incoherent maskers than for the reference masker. This was true even when the flanking components in the maskers were all remote in frequency from 700 Hz. In experiment 3, the masker components were all 50% SAM and the signal was added in antiphase at a dip of the envelope of the 700-Hz component, thus making the dip deeper. Performance was worse for the phase-incoherent than for the reference masker and was worse still for the comodulated masker. The results of all three experiments indicate strong ACM effects. CMR was found only when the signal was placed in the dips of the masker envelope and when it produced an increase in level relative to that in adjacent bands.  相似文献   

9.
Comparison of auditory filter shapes derived with three different maskers   总被引:1,自引:0,他引:1  
Auditory filter shapes were derived for three different masker types, by measuring threshold for a 1-kHz sinusoidal signal masked by: (a) a noise with a spectral notch of variable width; (b) two tones with variable frequency separation; and (c) a noise with a sinusoidally rippled spectrum with variable ripple density. In each case the masker spectrum was symmetric about the signal frequency, the signal level was fixed, and the masker level was varied to determine threshold using an adaptive, two-alternative, forced-choice procedure. Both simultaneous and forward masking were used. The auditory filter shapes derived from the data were broader in simultaneous masking than in forward masking for all three masker types. In simultaneous masking the derived filters were similar for the three masker types, although there was a tendency for the filters derived from the rippled-noise data to be broader than those for the other maskers. In forward masking the auditory filters derived from the data for three masker types differed considerably in bandwidth and the slope of the filter skirts, and in that a portion of the rippled-noise filter was negative valued. The results are consistent with the idea that suppression has the effect of enhancing frequency selectivity, and that this effect is revealed in forward but not in simultaneous masking. However, the degree and nature of the enhancement differs for different masker types.  相似文献   

10.
A series of four experiments was undertaken to ascertain whether signal threshold in frequency-modulated noise bands is dependent upon the coherence of modulation. The specific goal was to determine whether a masking release could be obtained with frequency modulation (FM), analogous to the comodulation masking release (CMR) phenomenon observed with amplitude modulation (AM). It was hypothesized that an across-frequency grouping process might give rise to such an effect. In experiments 1-3, maskers were composed of three noise bands centered on 1600, 2000, and 2400 Hz; these were either comodulated or noncomodulated with respect to both FM and AM. In experiment 1, the modulation was sinusoidal, and the signal was a 2000-Hz pure tone; in experiment 2, the modulation was random, and the signal was an FM noise band centered on 2000 Hz. The results obtained showed that, given sufficient width of modulation, thresholds were lower in a coherent FM masker than in an incoherent FM masker, regardless of the pattern of AM or signal type. However, thresholds in multiband maskers were usually elevated relative to that in a single-band masker centered on the signal. Experiment 3 demonstrated that coherent FM could be discriminated from incoherent FM. Experiment 4 gave similar patterns of results to the respective conditions of experiments 2 and 3, but for an inharmonic masker with bands centered on 1580, 2000, and 2532 Hz. While within-channel processes could not be entirely excluded from contributing to the present results, the experimental conditions were designed to be minimally conducive to such processes.  相似文献   

11.
Vowels are characterized by peaks in their spectral envelopes: the formants. To gain insight into the perception of speech as well as into the basic abilities of the ear, sensitivity to modulations in the positions of these formants is investigated. Frequency modulation detection thresholds (FMTs) were measured for the center frequency of formantlike harmonic complexes in the absence and in the presence of simultaneous off-frequency formants (maskers). Both the signals and the maskers were harmonic complexes which were band-pass filtered with a triangular spectral envelope, on a log-log scale, into either a LOW (near 500 Hz), a MID (near 1500 Hz), or a HIGH region (near 3000 Hz). They had a duration of 250 ms, and either an 80- or a 240-Hz fundamental. The modulation rate was 5 Hz for the signals and 10 Hz for the maskers. A pink noise background was presented continuously. In a first experiment no maskers were used. The measured FMTs were roughly two times larger than previously reported just-noticeable differences for formant frequency. In a second experiment, no significant differences were found between the FMTs in the absence of maskers and those in the presence of stationary (i.e., nonfrequency modulated) maskers. However, under many conditions the FMTs were increased by the presence of simultaneous modulated maskers. These results indicate that frequency modulation detection interference (FMDI) can exist for formantlike complex tones. The FMDI data could be divided into two groups. For stimuli characterized by a steep (200-dB/oct) slope, it was found that the size of the FMDI depended on which cues were used for detecting the signal and masker modulations. For stimuli with shallow (50-dB/oct) slopes, the FMDI was reduced when the signal and the masker had widely differing fundamentals, implying that the fundamental information is extracted before the interference occurs.  相似文献   

12.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Two experiments investigated listeners' ability to use a difference of two semitones in fundamental frequency (F0) to segregate a target voice from harmonic complex tones, with speech-like spectral profiles. Masker partials were in random phase (experiment 1) or in sine phase (experiment 2) and stimuli were presented over headphones. Target's and masker's harmonicity were each distorted by F0 modulation and reverberation. The F0 of each source was manipulated (monotonized or modulated by 2 semitones at 5 Hz) factorially. In addition, all sources were presented from the same location in a virtual room with controlled reverberation, assigned factorially to each source. In both experiments, speech reception thresholds increased by about 2 dB when the F0 of the masker was modulated and increased by about 6 dB when, in addition to F0 modulation, the masker was reverberant. Masker partial phases did not influence the results. The results suggest that F0-segregation relies upon the masker's harmonicity, which is disrupted by rapid modulation. This effect is compounded by reverberation. In addition, F0-segregation was found to be independent of the depth of masker envelope modulations.  相似文献   

14.
Stone et al. [J. Acoust. Soc Am. 130, 2874-2881 (2011)], using vocoder processing, showed that the envelope modulations of a notionally steady noise were more effective than the envelope energy as a masker of speech. Here the same effect is demonstrated using non-vocoded signals. Speech was filtered into 28 channels. A masker centered on each channel was added to the channel signal at a target-to-background ratio of -5 or -10 dB. Maskers were sinusoids or noise bands with bandwidth 1/3 or 1 ERB(N) (ERB(N) being the bandwidth of "normal" auditory filters), synthesized with Gaussian (GN) or low-noise (LNN) statistics. To minimize peripheral interactions between maskers, odd-numbered channels were presented to one ear and even to the other. Speech intelligibility was assessed in the presence of each "steady" masker and that masker 100% sinusoidally amplitude modulated (SAM) at 8 Hz. Intelligibility decreased with increasing envelope fluctuation of the maskers. Masking release, the difference in intelligibility between the SAM and its "steady" counterpart, increased with bandwidth from near-zero to around 50 percentage points for the 1-ERB(N) GN. It is concluded that the sinusoidal and GN maskers behaved primarily as energetic and modulation maskers, respectively.  相似文献   

15.
Thresholds were measured for detection of an increment in level of a 60-dB SPL target tone at 1 kHz, either in quiet or in the presence of maskers at 0.5 and 2 kHz. Interval-by-interval level rove applied independently to remote masker tones substantially elevated thresholds compared to intensity discrimination in quiet, an effect on the order of 10+dB [10 log(DeltaII)]. Asynchronous onset and stimulus envelope mismatches across frequency reduced but did not eliminate masking. A preinterval cue to signal frequency had no effect, but cuing masker frequency reduced thresholds, whether or not masker level was also cued. About 1 to 2 dB of threshold elevation in these conditions can be attributed to energetic masking. Decreasing the overall presentation level and increasing masker separation essentially eliminates energetic masking; under these conditions masker level rove elevates thresholds by approximately 7 dB when the target and masker tones are gated synchronously. This masking persists even when the flanking masker tones are presented contralateral to the target. Results suggest that observers tend to listen synthetically, even in conditions when this strategy reduces sensitivity to the intensity increment.  相似文献   

16.
To assess age-related differences in benefit from masker modulation, younger and older adults with normal hearing but not identical audiograms listened to nonsense syllables in each of two maskers: (1) a steady-state noise shaped to match the long-term spectrum of the speech, and (2) this same noise modulated by a 10-Hz square wave, resulting in an interrupted noise. An additional low-level broadband noise was always present which was shaped to produce equivalent masked thresholds for all subjects. This minimized differences in speech audibility due to differences in quiet thresholds among subjects. An additional goal was to determine if age-related differences in benefit from modulation could be explained by differences in thresholds measured in simultaneous and forward maskers. Accordingly, thresholds for 350-ms pure tones were measured in quiet and in each masker; thresholds for 20-ms signals in forward and simultaneous masking were also measured at selected signal frequencies. To determine if benefit from modulated maskers varied with masker spectrum and to provide a comparison with previous studies, a subgroup of younger subjects also listened in steady-state and interrupted noise that was not spectrally shaped. Articulation index (AI) values were computed and speech-recognition scores were predicted for steady-state and interrupted noise; predicted benefit from modulation was also determined. Masked thresholds of older subjects were slightly higher than those of younger subjects; larger age-related threshold differences were observed for short-duration than for long-duration signals. In steady-state noise, speech recognition for older subjects was poorer than for younger subjects, which was partially attributable to older subjects' slightly higher thresholds in these maskers. In interrupted noise, although predicted benefit was larger for older than younger subjects, scores improved more for younger than for older subjects, particularly at the higher noise level. This may be related to age-related increases in thresholds in steady-state noise and in forward masking, especially at higher frequencies. Benefit of interrupted maskers was larger for unshaped than for speech-shaped noise, consistent with AI predictions.  相似文献   

17.
This study examined whether "modulation masking" could be produced by temporal similarity of the probe and masker envelopes, even when the masker envelope did not contain a spectral component close to the probe frequency. Both masker and probe amplitude modulation were applied to a single 4-kHz sinusoidal or narrow-band noise carrier with a level of 70 dB SPL. The threshold for detecting 5-Hz probe modulation was affected by the presence of a pair of masker modulators beating at a 5-Hz rate (40 and 45 Hz, 50 and 55 Hz, or 60 and 65 Hz). The threshold was dependent on the phase of the probe modulation relative to the beat cycle of the masker modulators; the threshold elevation was greatest (12-15 dB for the sinusoidal carrier and 9-11 dB for the noise carrier, expressed as 20 log m) when the peak amplitude of the probe modulation coincided with a peak in the beat cycle. The maximum threshold elevation of the 5-Hz probe produced by the beating masker modulators was 7-12 dB greater than that produced by the individual components of the masker modulators. The threshold elevation produced by the beating masker modulators was 2-10 dB greater for 5-Hz probe modulation than for 3- or 7-Hz probe modulation. These results cannot be explained in terms of the spectra of the envelopes of the stimuli, as the beating masker modulators did not produce a 5-Hz component in the spectra of the envelopes. The threshold for detecting 5-Hz probe modulation in the presence of 5-Hz masker modulation varied with the relative phase of the probe and masker modulation. The pattern of results was similar to that found with the beating two-component modulators, except that thresholds were highest when the masker and probe were 180 degrees out of phase. The results are consistent with the idea that nonlinearities within the auditory system introduce distortion in the internal representation of the envelopes of the stimuli. In the case of two-component beating modulators, a weak component is introduced at the beat rate, and it has an amplitude minimum when the beat cycle is at its maximum. The results could be fitted well using two models, one based on the concept of a sliding temporal integrator and one based on the concept of a modulation filter bank.  相似文献   

18.
Fastl and Bechly [J. Acoust. Soc. Am. 74, 754-757 (1983)] reported that the threshold of a brief 900-Hz signal simultaneously masked by a band of noise. 100 Hz wide, centered at 1000 Hz, was reduced by approximately 8 dB by the addition of an 1150-Hz tone having a level of 20 dB above that of the narrow-band masker. They concluded that this decrease in threshold was a demonstration of suppression in simultaneous masking. Here it is argued that Fastl and Bechly's results simply reflect the poorer detectability of signals masked by higher-frequency fluctuating maskers (their narrow-band masker) than by relatively flat-envelope maskers (their composite narrow-band plus tonal masker). The results of three experiments support the masker-envelope explanation. In the first experiment, as in the report of Fastl and Bechly, the masker centered at 1000 Hz (M1) was a narrow-band noise and the masker centered at 1150 Hz (M2) was a tone. Fastl and Bechly's result was replicated. However, thresholds obtained when M1 was presented alone (the M1-only condition) were more affected by the starting level of the signal within each adaptive track than were thresholds obtained when M1 and M2 were presented together (the M1+M2 condition). This result paralleled a previous report that starting level influenced performance more with fluctuating than with flat-envelope maskers. For the four of seven subjects wh showed learning, there was also more improvement in the M1-only than in the M1 + M2 condition. In the second experiment, M1 was a tone and M2 was a narrow-band noise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of the presence of an amplitude discontinuity in the spectrum of a noise masker on frequency discrimination performance were examined. First, detection thresholds as a function of masker level were obtained for pure-tone signals masked by either simultaneous or forward white and low-pass maskers. Then frequency discrimination thresholds were obtained using four masker levels that were chosen to yield predetermined masked thresholds, with signal levels corresponding to each of three sensation levels above these masked thresholds. The principal results indicate that frequency discrimination is poorer in simultaneous low-pass noise than in simultaneous white noise, and that this difference in performance increases with increasing sensation level and with increasing masker level. These results are inconsistent with an explanation based on the pitches generated at spectral edges ("edge pitch"), pitch shifts, or disruption of phase-locking information, but are generally consistent with an explanation based on lateral suppression. It is proposed that a release from suppression may occur in filtered noise backgrounds at high noise levels and at high sensation levels. The reduced suppression may result in poorer frequency discrimination due, in part, to reduced signal detectability.  相似文献   

20.
Spectro-temporal processing in the envelope-frequency domain   总被引:1,自引:0,他引:1  
The frequency selectivity for amplitude modulation applied to tonal carriers and the role of beats between modulators in modulation masking were studied. Beats between the masker and signal modulation as well as intrinsic envelope fluctuations of narrow-band-noise modulators are characterized by fluctuations in the "second-order" envelope (referred to as the "venelope" in the following). In experiment 1, masked threshold patterns (MTPs), representing signal modulation threshold as a function of masker-modulation frequency, were obtained for signal-modulation frequencies of 4, 16, and 64 Hz in the presence of a narrow-band-noise masker modulation, both applied to the same sinusoidal carrier. Carrier frequencies of 1.4, 2.8, and 5.5 kHz were used. The shape and relative bandwidth of the MTPs were found to be independent of the signal-modulation frequency and the carrier frequency. Experiment 2 investigated the extent to which the detection of beats between signal and masker modulation is involved in tone-in-noise (TN), noise-in-tone (NT), and tone-in-tone (TT) modulation masking, whereby the TN condition was similar to the one used in the first experiment. A signal-modulation frequency of 64 Hz, applied to a 2.8-kHz carrier, was tested. Thresholds in the NT condition were always lower than in the TN condition, analogous to the masking effects known from corresponding experiments in the audio-frequency domain. TT masking conditions generally produced the lowest thresholds and were strongly influenced by the detection of beats between the signal and the masker modulation. In experiment 3, TT masked-threshold patterns were obtained in the presence of an additional sinusoidal masker at the beat frequency. Signal-modulation frequencies of 32, 64, and 128 Hz, applied to a 2.8-kHz carrier, were used. It was found that the presence of an additional modulation at the beat frequency hampered the subject's ability to detect the envelope beats and raised thresholds up to a level comparable to that found in the TN condition. The results of the current study suggest that (i) venelope fluctuations play a similar role in modulation masking as envelope fluctuations do in spectral masking, and (ii) envelope and venelope fluctuations are processed by a common mechanism. To interpret the empirical findings, a general model structure for the processing of envelope and venelope fluctuations is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号