首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Denote by an l-component a connected graph with l edges more than vertices. We prove that the expected number of creations of (l+1)-component, by means of adding a new edge to an l-component in a randomly growing graph with n vertices, tends to 1 as l,n tends to ∞ but with l=o(n1/4). We also show, under the same conditions on l and n, that the expected number of vertices that ever belong to an l-component is (12l)1/3n2/3.  相似文献   

2.
The SUM COLORING problem consists of assigning a color c(vi)Z+ to each vertex viV of a graph G=(V,E) so that adjacent nodes have different colors and the sum of the c(vi)'s over all vertices viV is minimized. In this note we prove that the number of colors required to attain a minimum valued sum on arbitrary interval graphs does not exceed min{n;2χ(G)−1}. Examples from the papers [Discrete Math. 174 (1999) 125; Algorithmica 23 (1999) 109] show that the bound is tight.  相似文献   

3.
An L(2,1)-coloring of a graph G is a coloring of G's vertices with integers in {0,1,…,k} so that adjacent vertices’ colors differ by at least two and colors of distance-two vertices differ. We refer to an L(2,1)-coloring as a coloring. The span λ(G) of G is the smallest k for which G has a coloring, a span coloring is a coloring whose greatest color is λ(G), and the hole index ρ(G) of G is the minimum number of colors in {0,1,…,λ(G)} not used in a span coloring. We say that G is full-colorable if ρ(G)=0. More generally, a coloring of G is a no-hole coloring if it uses all colors between 0 and its maximum color. Both colorings and no-hole colorings were motivated by channel assignment problems. We define the no-hole span μ(G) of G as ∞ if G has no no-hole coloring; otherwise μ(G) is the minimum k for which G has a no-hole coloring using colors in {0,1,…,k}.

Let n denote the number of vertices of G, and let Δ be the maximum degree of vertices of G. Prior work shows that all non-star trees with Δ3 are full-colorable, all graphs G with n=λ(G)+1 are full-colorable, μ(G)λ(G)+ρ(G) if G is not full-colorable and nλ(G)+2, and G has a no-hole coloring if and only if nλ(G)+1. We prove two extremal results for colorings. First, for every m1 there is a G with ρ(G)=m and μ(G)=λ(G)+m. Second, for every m2 there is a connected G with λ(G)=2m, n=λ(G)+2 and ρ(G)=m.  相似文献   


4.
In a circular permutation diagram, there are two sets of terminals on two concentric circles: Cin and Cout. Given a permutation Π = [π1, π2, …, πn], terminal i on Cin and terminal πi on Cout are connected by a wire. The intersection graph Gc of a circular permutation diagram Dc is called a circular permutation graph of a permutation Π corresponding to the diagram Dc. The set of all circular permutation graphs of a permutation Π is called the circular permutation graph family of permutation Π. In this paper, we propose the following: (1) an O(V + E) time algorithm to check if a labeled graph G = (V, E) is a labeled circular permutation graph. (2) An O(n log n + nt) time algorithm to find a maximum independent set of a family, where n = Π and t is the cardinality of the output. (Number t in the worst case is O(n). However, if Π is uniformly distributed (and independent from i), its expected value is O(√n).) (3) An O(min(δVclog logVc,VclogVc) + Ec) time algorithm for finding a maximum independent set of a circular permutation diagram Dc, where δ is the minimum degree of vertices in the intersection graph Gc = (Vc,Ec) of Dc. (4) An O(n log log n) time algorithm for finding a maximum clique and the chromatic number of a circular permutation diagram, where n is the number of wires in the diagram.  相似文献   

5.
We construct vertex-transitive graphs Γ, regular of valency k=n2+n+1 on vertices, with integral spectrum, possessing a distinguished complete matching such that contracting the edges of this matching yields the Johnson graph J(2n, n) (of valency n2). These graphs are uniformly geodetic in the sense of Cook and Pryce (1983) (F-geodetic in the sense of Ceccharini and Sappa (1986)), i.e., the number of geodesics between any two vertices only depends on their distance (and equals 4 when this distance is two). They are counterexamples to Theorem 3.15.1 of [1], and we show that there are no other counterexamples.  相似文献   

6.
We consider the problem of recognizing AT-free graphs. Although there is a simple O(n3) algorithm, no faster method for solving this problem had been known. Here we give three different algorithms which have a better time complexity for graphs which are sparse or have a sparse complement; in particular we give algorithms which recognize AT-free graphs in , , and O(n2.82+nm). In addition we give a new characterization of graphs with bounded asteroidal number by the help of the knotting graph, a combinatorial structure which was introduced by Gallai for considering comparability graphs.  相似文献   

7.
Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers   总被引:6,自引:0,他引:6  
The Ramsey number r(H,Kn) is the smallest integer N so that each graph on N vertices that fails to contain H as a subgraph has independence number at least n. It is shown that r(K2,m,Kn)(m−1+o(1))(n/log n)2 and r(C2m,Kn)c(n/log n)m/(m−1) for m fixed and n→∞. Also r(K2,n,Kn)=Θ(n3/log2 n) and .  相似文献   

8.
We investigate the complexity of several domination problems on the complements of bounded tolerance graphs and the complements of trapezoid graphs. We describe an O(n2 log5 n) time and O(n2) space algorithm to solve the domination problem on the complement of a bounded tolerance graph, given a square embedding of that graph. We also prove that domination, connected domination and total domination are all NP-complete on co-trapezoid graphs.  相似文献   

9.
An (r, n)-split coloring of a complete graph is an edge coloring with r colors under which the vertex set is partitionable into r parts so that for each i, part i does not contain Kn in color i. This generalizes the notion of split graphs which correspond to (2, 2)-split colorings. The smallest N for which the complete graph KN has a coloring which is not (r, n)-split is denoted by ƒr(n). Balanced (r,n)-colorings are defined as edge r-colorings of KN such that every subset of [N/r] vertices contains a monochromatic Kn in all colors. Then gr(n) is defined as the smallest N such that KN has a balanced (r, n)-coloring. The definitions imply that fr(n) gr(n). The paper gives estimates and exact values of these functions for various choices of parameters.  相似文献   

10.
Chepoi showed that every breadth first search of a bridged graph produces a cop-win ordering of the graph. We note here that Chepoi's proof gives a simple proof of the theorem that G is bridged if and only if G is cop-win and has no induced cycle of length four or five, and that this characterization together with Chepoi's proof reduces the time complexity of bridged graph recognition. Specifically, we show that bridged graph recognition is equivalent to (C4,C5)-free graph recognition, and reduce the best known time complexity from O(n4) to O(n3.376).  相似文献   

11.
A weighted graph (G,w) is a graph G together with a positive weight-function on its vertex set w : V(G)→R>0. The weighted domination number γw(G) of (G,w) is the minimum weight w(D)=∑vDw(v) of a set DV(G) such that every vertex xV(D)−D has a neighbor in D. If ∑vV(G)w(v)=|V(G)|, then we speak of a normed weighted graph. Recently, we proved that
for normed weighted bipartite graphs (G,w) of order n such that neither G nor the complement has isolated vertices. In this paper we will extend these Nordhaus–Gaddum-type results to triangle-free graphs.  相似文献   

12.
We study the problem of designing fault-tolerant routings with small routing tables for a k-connected network of n processors in the surviving route graph model. The surviving route graph R(G,ρ)/F for a graph G, a routing ρ and a set of faults F is a directed graph consisting of nonfaulty nodes of G with a directed edge from a node x to a node y iff there are no faults on the route from x to y. The diameter of the surviving route graph could be one of the fault-tolerance measures for the graph G and the routing ρ and it is denoted by D(R(G,ρ)/F). We want to reduce the total number of routes defined in the routing, and the maximum of the number of routes defined for a node (called route degree) as least as possible. In this paper, we show that we can construct a routing λ for every n-node k-connected graph such that n2k2, in which the route degree is , the total number of routes is O(k2n) and D(R(G,λ)/F)3 for any fault set F (|F|<k). In particular, in the case that k=2 we can construct a routing λ′ for every biconnected graph in which the route degree is , the total number of routes is O(n) and D(R(G,λ′)/{f})3 for any fault f. We also show that we can construct a routing ρ1 for every n-node biconnected graph, in which the total number of routes is O(n) and D(R(G1)/{f})2 for any fault f, and a routing ρ2 (using ρ1) for every n-node biconnected graph, in which the route degree is , the total number of routes is and D(R(G2)/{f})2 for any fault f.  相似文献   

13.
Given an n-vertex outer-planar graph G and a set P of n points in the plane, we present an O(nlog3n) time and O(n) space algorithm to compute a straight-line embedding of G in P, improving upon the algorithm in [8,12] that requires O(n2) time. Our algorithm is near-optimal as there is an Ω(nlogn) lower bound for the problem [4]. We present a simpler O(nd) time and O(n) space algorithm to compute a straight-line embedding of G in P where lognd2n is the length of the longest vertex disjoint path in the dual of G. Therefore, the time complexity of the simpler algorithm varies between O(nlogn) and O(n2) depending on the value of d. More efficient algorithms are presented for certain restricted cases. If the dual of G is a path, then an optimal Θ(nlogn) time algorithm is presented. If the given point set is in convex position then we show that O(n) time suffices.  相似文献   

14.
Let G be a graph of maximum degree Δ. A proper vertex coloring of G is acyclic if there is no bichromatic cycle. It was proved by Alon et al. [Acyclic coloring of graphs. Random Structures Algorithms, 1991, 2(3): 277−288] that G admits an acyclic coloring with O4/3) colors and a proper coloring with O(k−1)/(k−2)) colors such that no path with k vertices is bichromatic for a fixed integer k≥5. In this paper, we combine above two colorings and show that if k≥5 and G does not contain cycles of length 4, then G admits an acyclic coloring with O(k−1)/(k−2)) colors such that no path with k vertices is bichromatic.  相似文献   

15.
In this paper, we provide a solution of the quadrature sum problem of R. Askey for a class of Freud weights. Let r> 0, b (− ∞, 2]. We establish a full quadrature sum estimate
1 p < ∞, for every polynomial P of degree at most n + rn1/3, where W2 is a Freud weight such as exp(−¦x¦), > 1, λjn are the Christoffel numbers, xjn are the zeros of the orthonormal polynomials for the weight W2, and C is independent of n and P. We also prove a generalisation, and that such an estimate is not possible for polynomials P of degree M = m(n) if m(n) = n + ξnn1/3, where ξn → ∞ as n → ∞. Previous estimates could sum only over those xjn with ¦xjn¦ σx1n, some fixed 0 < σ < 1.  相似文献   

16.
Every graph can be represented as the intersection graph on a family of closed unit cubes in Euclidean space En. Cube vertices have integer coordinates. The coordinate matrix, A(G)={vnk} of a graph G is defined by the set of cube coordinates. The imbedded dimension of a graph, Bp(G), is a number of columns in matrix A(G) such that each of them has at least two distinct elements vnkvpk. We show that Bp(G)=cub(G) for some graphs, and Bp(G)n−2 for any graph G on n vertices. The coordinate matrix uses to obtain the graph U of radius 1 with 3n−2 vertices that contains as an induced subgraph a copy of any graph on n vertices.  相似文献   

17.
We consider the problem of efficient coloring of the edges of a so-called binomial tree T, i.e. acyclic graph containing two kinds of edges: those which must have a single color and those which are to be colored with L consecutive colors, where L is an arbitrary integer greater than 1. We give an O(n) time algorithm for optimal coloring of such a tree, where n is the number of vertices of T. Also, we give simple bounds on the chromatic index of T and a division of all binomial trees into two classes depending on their chromaticity.  相似文献   

18.
In 2006, Sullivan stated the conjectures:(1) every oriented graph has a vertex x such that d~(++)(x) ≥ d~-(x);(2) every oriented graph has a vertex x such that d~(++)(x) + d~+(x) ≥ 2 d~-(x);(3) every oriented graph has a vertex x such that d~(++)(x) + d~+(x) ≥ 2 · min{d~+(x), d~-(x)}. A vertex x in D satisfying Conjecture(i) is called a Sullivan-i vertex, i = 1, 2, 3. A digraph D is called quasi-transitive if for every pair xy, yz of arcs between distinct vertices x, y, z, xz or zx("or" is inclusive here) is in D. In this paper, we prove that the conjectures hold for quasi-transitive oriented graphs, which is a superclass of tournaments and transitive acyclic digraphs. Furthermore, we show that a quasi-transitive oriented graph with no vertex of in-degree zero has at least three Sullivan-1 vertices and a quasi-transitive oriented graph has at least three Sullivan-3 vertices unless it belongs to an exceptional class of quasitransitive oriented graphs. For Sullivan-2 vertices, we show that an extended tournament, a subclass of quasi-transitive oriented graphs and a superclass of tournaments, has at least two Sullivan-2 vertices unless it belongs to an exceptional class of extended tournaments.  相似文献   

19.
Let k be a fixed, positive integer. We give an algorithm which computes the Tutte polynomial of any graph G of treewidth at most k in time O(n2+7 log2 c), where c is twice the number of partitions of a set with 3k + 3 elements and n the number of vertices of G.  相似文献   

20.
Two edges are called P4-adjacent if they belong to the same P4 (chordless path on four vertices). P4-components, in our terminology, are the equivalence classes of the transitive closure of the P4-adjacency relation. In this paper, new results on the structure of P4-components are obtained. On the one hand, these results allow us to improve the complexity of orienting P4-comparability graphs and of recognizing P4-indifference graphs from O(n5) and O(n6) to O(m2). On the other hand, by combining the modular decomposition with the substitution of P4-components, a new unique tree representation for arbitrary graphs is derived which generalizes the homogeneous decomposition introduced by Jamison and Olariu (SIAM J. Discrete Math. 8 (1995) 448–463).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号