首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The chromatographic separation and resolution of the enantiomers of flurbiprofen and its two major metabolites, 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen was investigated using four different approaches: reversed-phase HPLC after pre-column derivatization with (R)-1-(naphthen-1-yl)ethylamine; reversed-phase HPLC using hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive; chiral-phase HPLC using either an α1-acid glycoprotein CSP (Chiral-AGP) or an amylose tris(3,5-dimethylphenylcarbamate) CSP (Chiralpak AD). Of all the approaches, only the direct method using the Chiralpak AD CSP demonstrated separation and enantiomeric resolution of all three analytes within an acceptable run time of 45 minutes. Enantiomeric resolution values of 1.67,3.67 and 3.44 were obtained for flurbiprofen, 4′-hydroxyflurbiprofen and 3′-hydroxy-4′-methoxyflurbiprofen respectively. Semi-preparative isolation of the individual enantiomers of both metabolites, followed by CD analysis, revealed that the elution order on the AD CSP wasR-beforeS-enantiomer for both metabolites and the same as that observed for flurbiprofen. The metabolite elution order was subsequently confirmed on the analysis of urine samples obtained from a healthy volunteer following oral administration of the individual drug enantiomers.  相似文献   

2.
A direct and stereospecific capillary zone electrophoresis (CZE) method for quantification ibuprofen enantiomers in biological matrices: human serum and urine, has been developed. Chiral separation of the enantiomers of ibuprofen and (+)-S-indobufen [(+)-S-INDB, internal standard, IS] was obtained in an uncoated silica capillary filled with a background electrolyte (BGE), consisted of heptakis 2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD) in buffer of pH 5.0. The complete enantioselective analysis of ibuprofen and its 1-hydroxy metabolite confirmed appropriate specificity of the method. The electrophoretic parameters: electroosmotic (μEOF) and electrophoretic (μep) mobility and resolution factor (Rs) were determined. Extraction procedures with organic solvent and solid phase extraction (SPE) with C18 stationary phase for isolation of enantiomers from biological fluids were compared. SPE method for further studies was chosen. Stereoselective extraction of IBP enantiomers from serum at basic pH has been discovered. Validation of the method was carried out. Calibration curves of ibuprofen enantiomers were linear in the range of 0.1-25.0 μg/ml in serum and of 0.5-250.0 μg/ml in urine. Recovery of both enantiomers from serum and urine amounted 74-86 and 90-98%, respectively. Intra- and inter-day measurement precision and accuracy were below 15%. Limits of detection for IBP enantiomers amounted 0.05 and 0.25 μg/ml in samples of serum and urine, respectively. Limit of quantitation was also estimated. IBP enantiomers proved to be stable following three freeze and thaw cycles and during storage in autosampler at ambient temperature. The validated methods enable pharmacokinetic studies of enantiomers in both media. The elaborated HPCE method can be alternative to HPLC.  相似文献   

3.

Abstract  

A stereoselective HPLC method has been developed for the simultaneous determination of oxprenolol enantiomers in urine and pharmaceutical products. Enantiomeric resolution of oxprenolol was achieved on cellulose tris(3,5-dichlorophenylcarbamate) immobilized onto a 5 μm spherical porous silica chiral stationary phase (CSP) known as Chiralpak IC with UV detection at 273 nm. The mobile phase consisted of n-hexane:isopropanol:triethylamine 70:30:0.1 (v/v/v) at a flow rate of 1.0 cm3/min. The method was validated for its linearity, accuracy, precision, and robustness. The calibration curves were linear over the range of 0.5–75 μg/cm3, with a detection limit of 0.1 μg/cm3 for each enantiomer. An average recovery of 99.0% and a mean relative standard deviation of 2.6% at 40.0 μg/cm3 for S-(−)- and R-(+)-enantiomers were obtained. The overall recoveries of oxprenolol enantiomers from pharmaceutical formulations were in the range 97.5–99.0%, with RSDs ranging from 0.6 to 0.8%. The mean extraction efficiency of oxprenolol from urine was in the range of 86.0–93.0% at 0.5–5 μg/cm3 for each enantiomer. The assay method proved to be suitable as a chiral quality control for oxprenolol formulations using HPLC and for therapeutic drug monitoring.  相似文献   

4.
Chiral analysis of profens in human plasma is an important area of research due to different pharmaceutical activities of their enantiomers. The solid phase extraction of ibuprofen and flurbiprofen from human plasma was carried out on C18 cartridges by using phosphate buffer (50 mM, pH 6.0) followed by elution with methanol. Chiral-HPLC was performed on AmyCoat RP (150 mm x 46 mm, 3 μm particle size) column by using different combinations of water-acetonitrile-trifluoro acetic acid at 1.5 mLmin-1 flow rate. The detection was achieved at 236 and 254 nm for ibuprofen and flurbiprofen, respectively with 27±1°C as working temperature. The chromatographic parameters i.e. retention (k), separation (α) and resolution (Rs) factors ranged from 4.54-14.42, 1.10-1.30 and 1.01-1.49, respectively. The binding differences of enantiomers of ibuprofen and flurbiprofen were 4.4 and 5.2, respectively. These values suggest that S-(+)- enantiomer of flurbiprofen is more active than ibuprofen due to low enantiomeric difference of the later drug. The developed SPE-Chiral HPLC methods were validated, which are selective, efficient and reproducible.  相似文献   

5.
Summary The chromatographic resolution of the enantiomers of sulindac has been achieved using a Chiralpak AD CSP (10 μm, 250×4.6 mm) with a mobile phase of hexane: ethanol (85∶15 v/v) containing trifluoroacetic acid (0.05% v/v) at a flow rate of 1.0 mL min−1. Under these conditions the enantiomers eluted with separation and resolution factors of 1.43 and 2.46 respectively. Semipreparative isolation of the enantiomers and their characterization by circular dichroism spectroscopy and NMR, in the presence of a chiral shift reagent, indicated that the elution order was (−)-(S)- before (+)-(R)-sulindac. The enantiomeric composition of sulindac in urine following administration of the racemic drug to man was determined by sequential achiral-chiral chromatography. Achiral analysis was carried out using a Spherisorb S5 ODS2 stationary phase (5 μm, 250×4.6 mm) and a mobile phase of aqueous acetic acid (2% v/v; pH 3.5): acetonitrile: THF (50∶48∶2 by volume) at a flow rate of 1.0 mL min−1. The HPLC eluate containing sulindac (retention time 4.9 min) was collected and following workup, the enantiomeric composition of the drug was determined using the CSP. Over the 24 h collection period sulindac was excreted predominantly as theR-enantiomer, but the enantiomeric composition was found to vary markedly with time which is presumably associated with the complex metabolism of the drug.  相似文献   

6.
A normal-phase high-performance liquid chromatographic method, using a hexane-ethyl acetate solvent system, for the determination of the enantiomeric composition of ibuprofen in human plasma is described. The method is based on the resolution of the diastereoisomeric amides formed on reaction of the ibuprofen enantiomers with S-1-(naphthen-1-yl)ethylamine using p-chlorophenoxy-acetic acid as internal standard. The application of the method for the determination of the enantiomeric composition of ibuprofen in human plasma following the repeated oral administration of the drug to two volunteers is reported. The plasma concentrations of the S-(+) enantiomer were always greater than that of the R-(-), the ratio of the areas under the enantiomer plasma concentration-time curves (S/R) being 1.8 and 1.6.  相似文献   

7.
Thin silica gel layers impregnated with optically pure l ‐glutamic acid were used for direct resolution of enantiomers of (±)‐isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l ‐alanine, l ‐valine and S‐benzyl‐l ‐cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed‐phase high‐performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin‐layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)‐isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)‐isoxsuprine. The elution order in the experimental study of RP‐TLC and RP‐HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1–0.09 µg/mL in TLC while it was in the range of 22–23 pg/mL in HPLC and 11–13 ng/mL in RP‐TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
An enantioselective high-performance liquid chromatographic method, with precolumn derivatization with Marfey’s chiral reagent, sodium 2,4-dinitro-5-fluorophenyl-l-alanine amide, has been developed for resolution of the enantiomers of a new antiepileptic drug, pregabalin, in the bulk drug. The diastereomers of the pregabalin enantiomers were resolved to baseline on a reversed-phase ODS column with a 60:40 (v/v) mixture of aqueous 0.2% triethylamine (pH adjusted to 3.5 with dilute orthophosphoric acid) and acetonitrile as mobile phase. Resolution between the diastereomers was not less than five. The method was extensively validated and proved to be robust. The calibration plot was indicative of an excellent linear relationship between response and concentration over the range 750 (LOQ) to 7,500 ng L−1 for the R enantiomer. The limits of detection and quantification of the R enantiomer were 250 and 750 ng L−1, respectively, for an injection volume of 10 μL. Recovery of the R enantiomer from bulk drug samples of pregabalin ranged from 97.5 to 101.76%. Solutions of pregabalin in water and in the mobile phase were found to be stable for at least 48 h. The method was found to be suitable and accurate for quantitative determination of the R enantiomer in the bulk drug. It can be also used to test the stability of samples of pregabalin.  相似文献   

9.
Owing to their chelation ability, a series of fully constrained l-Glu analogs formed by the spiro-union of two cyclopropane rings (1-aminospiro[2.2]pentyl-1,4-dicarboxylic acids, ASPED A–D), was submitted to chiral ligand-exchange chromatographic (CLEC) analysis. As the initial step, two methodologically different chiral devices were evaluated. A chiral stationary phase (CSP) obtained by dynamic coating of C18 chains with the S-trityl-(R)-cysteine ((R)-STC) was used first with this objective. The lack of separation of the enantiomers of ASPED C and D prompted us to utilize the chiral mobile phase (CMP) prepared from O-benzyl-(S)-serine ((S)-OBS). The latter afforded complete separation of the four pairs of enantiomers. For all the pairs, quantum mechanical investigations shed light on the main features responsible for the different enantiomer recognition mechanism with (S)-OBS. The validated analytical method was then fruitfully adopted for semi-preparative-scale isolation of the enantiomers of ASPED C.  相似文献   

10.
18-Crown-6 tetracarboxylic acid (18C6H4) has been successfully used as a chiral selector for capillary electrophoretic (CE), high-performance liquid chromatographic (HPLC), and gas chromatographic (GC) separation of the enantiomers of DL-amino compounds. We have previously used X-ray crystallographic analysis and HPLC with an immobilized 18C6H4 chiral stationary phase to study chiral recognition by 18C6H4 of several DL amino acids (DL-AA). In this study CE was used for chiral recognition of several DL-AA in electrolyte solution containing 18C6H4, in which the analyte (D or L amino acid) interacts freely. Among 14 DL-AA investigated, the enantiomers of nine (Glu, Ile, Met, PheG, Phe, Ser, Tyr, Val, and Thr) were successfully recognized in 4-15 mM 18C6H4. Indirect photometric detection with a cationic dye, chrysoidine, was used to monitor non-chromophoric DL-AA. Among nine successfully recognized DL-AA, the D forms of Ser, Thr and Met migrated faster than the corresponding L forms. The strengths of interactions predicted from the order of migration of each enantiomer in CE were different from those in HPLC analysis. The different enantiomer recognition probably can be ascribed to the difference between CE in which the selector is not immobilized and HPLC in which the selector is immobilized by means of a spacer.  相似文献   

11.
A simple, rapid, and efficient method, dispersive liquid–liquid microextraction (DLLME) coupled with high‐performance liquid chromatography‐fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0–2, 2–4, and 4–6 h and concentration and ratio of two enantiomers was determined. The ratio of R‐(?) to S‐(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH2Cl2. After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid–liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers.  相似文献   

12.
A simple, rapid, and robust chiral HPLC method has been developed and validated for separation of the enantiomers of epinephrine, l-1-(3,4-dihydroxyphenyl)-2-(methylamino)ethanol, an antihypertensive drug, in the bulk drug. The enantiomers were resolved on an amylose-based stationary phase with n-hexane–2-propanol–methanol–trifluoroacetic acid–diethylamine 90:05:05:0.2:0.2 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. In the optimized method resolution between the enantiomers was not less than 3.0. The trifluoroacetic acid and diethylamine in the mobile phase were important for enhancing chromatographic efficiency and hence the resolution of the enantiomers. The method was extensively validated and proved to be robust. The calibration plot for the d enantiomer was highly linear over the concentration range 100–2,000 μg mL?1. The limits of detection and quantification for the d enantiomer were 0.15 and 0.45 μg mL?1, respectively. Recovery of the d enantiomer from bulk drug samples of epinephrine ranged between 99.5 and 101.5%. Epinephrine sample solution was stable for up to 48 h. The method was suitable for accurate quantitative determination of the d enantiomer in the bulk drug substance  相似文献   

13.
Propranolol, a β‐adrenergic receptor antagonist, is a chiral compound that is marketed as a racemate, but only the (S)‐(?)‐enantiomer is responsible for the β‐adrenoceptor blocking activity. Different chromatographic methods have been applied for separation and determination of enantiomers of (RS)‐propranolol. In this article a review is presented on different liquid chromatographic methods used for enantioseparation of (RS)‐propranolol, using both HPLC and TLC. In addition, some aspects of enantioseparation under achiral phases of liquid chromatography have been briefly mentioned.  相似文献   

14.
A chiral liquid chromatographic method for enantiomeric resolution of β-amino-β-(3-methoxyphenyl) propionic acid was developed and validated. The “hybrid” π-electron donor–acceptor based stationary phase (R,R) Whelk-01 was found to be enantiomerically selective for (R) and (S) enantiomers of β-amino-β-(3-methoxyphenyl) propionic acid with a resolution greater than 2.0. The effects of isopropyl alcohol and ethanol on enantioselectivity and resolution of enantiomers were evaluated. Calibration curves were linear over the range of 0.10–1.00, with a regression coefficient (r) of 0.999. The limit of detection (LOD) and limit of quantification (LOQ) were 300 and 1,000 ng mL−1 respectively for 10 μL injection volume. The percentage RSD of the peak area of six replicate injections of (S) enantiomer at LOQ concentration was 2.8. The percentage recovery of (S) enantiomer from (R) enantiomer samples ranged from 92 to 102. The test solution was observed to be stable up to 24 h after the preparation. The developed normal phase chiral LC method can be used for the enantiomeric purity evaluation of R-β-amino-β-(3-methoxyphenyl) propionic acid.  相似文献   

15.
Antidepressants are widely used for the treatment of psychiatric disorders and therefore their monitoring in biological fluids is quite important taking into account that they can produce dangerous biochemical imbalances in toxic doses. A method for the determination of antidepressants in urine samples is presented using solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Home-made cartridges containing 30 mg multiwall carbon nanotubes are employed for isolation of the analytes from the sample, allowing also the preconcentration of the analytes prior to the HPLC analysis. Chromatographic separation was achieved in a reversed-phase C8 column using the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate as silanol activity suppressor, which enhances peak symmetry and chromatographic resolution. Limits of detection were 12.3 ng mL−1 for trazodone and 90.1 ng mL−1 for fluoxetine. The repeatability of the proposed method expressed as RSD (n = 11) varied between 3.4% (fluoxetine) and 5.0% (desipramine and mianserine). Thus, the method is suitable for the therapeutic monitoring of antidepressants in urine samples.  相似文献   

16.
Wang  Huan  Chen  Yan  Zhou  Jia  Ma  Chen  Chen  Yuancheng  Liu  Xiaoquan 《Chromatographia》2008,67(11):875-881

A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL−1 in plasma and 0.32–20 μg mL−1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.

  相似文献   

17.
A simple, isocratic, normal phase chiral HPLC method was developed and validated for the enantiomeric separation of repaglinide, (S)-(+)-2-ethoxy-4-N [1-(2-piperidinophenyl)-3-methyl-1-butyl] aminocarbonylmethyl] benzoic acid, an antidiabetic in bulk drug substance. The enantiomers of repaglinide were resolved on a ChiralPak AD-H (amylose based stationary phase) column using a mobile phase consisting of n-hexane: 2-propanol:trifluoroacetic acid (95:5:0.2 v/v/v) at a flow rate of 1.0 mL min−1. The resolution between the enantiomers was found to be not >3.5 in optimized method. The presence of trifluoroacetic acid in the mobile phase played an important role, in enhancing chromatographic efficiency and resolution between the enantiomers. The developed method was extensively validated and proved to be robust. The calibration curve for (R)-enantiomer showed excellent linearity over the concentration range of 900 ng mL−1 (LOQ) to 6,000 ng mL−1. The limit of detection and limit of quantification for (R)-enantiomer were 300 and 900 ng mL−1, respectively. The percentage recovery of the (R)-enantiomer ranged between 98.3 and 101.05% in bulk drug samples of repaglinide. Repaglinide sample solution and mobile phase were found to be stable up to 48 h. The developed method was found to be enantioselective, accurate, precise and suitable for quantitative determination of (R)-enantiomer in bulk drug substance.  相似文献   

18.
Abstract

Ibuprofen is a non-steroidal anti-inflammatory drug, widely used in arthritis and other disorders. We describe a high pressure liquid chromatographic (HPLC) method for the analysis of ibuprofen in plasma, using an automated solid phase extraction technique (the Varian AASPR). In this method ibuprofen was extracted from 0.5 ml of plasma by application to a C2 extraction cartridge followed by “on line” elution with the HPLC mobile phase (55% acetonitrile / 45% 0.02 H phosphate buffer; pH 3.0), at a flow rate of 1.5 ml/min. The analytical column was a Nucleosil C18 column and the fluorescence detector was set at 253 nm (excitation wavelength) and 300 nm (emission wavelength). Chromatography was complete in less than 10 mins and the limit of detection was 1.3 /μg/ml. The method is linear through the range of 1.0 to 100.0 /μg/ml with a mean correlation coefficient of 0.9964. Absolute recovery of ibuprofen from the spiked plasma samples ranged from 77.8% to 86.5%. The method was shown to be precise within 11% C.V. and accurate to within 8% over the concentration range studied.  相似文献   

19.
Chiral stationary phases (CSPs) for high-performance liquid chromatographic (HPLC) have been prepared by coating silica gel with cellulose tribenzoate or cellulose trisphenylcarbamate. The effect of chiral additives on preparation of the CSPs was studied with (+)-l-mandelic acid, (−)-2-phenyl-1-propanol, (+)-1-phenyl-1,2-ethanediol and (−)-1-(1-naphthyl)ethanol as chiral additives for cellulose tribenzoate and (−)-2-phenyl-1-propanol and (+)-phenylsuccinic acid as chiral additives for cellulose trisphenylcarbamate. The results showed that chiral recognition by these stationary phases was increased in comparison with the original CSPs, especially the resolution (R S) obtained. The method can be used to improve the efficiency of enantiomer separation by silica gel stationary phases coated with polymers.  相似文献   

20.
Abstract

A method for quantitation of 2,5-dimethoxy-4-methylamphetamine (DOM) enantiomers in plasma by high-performance liquid chromatography (HPLC) is described, d- and l-DOM were readily converted to the amides by condensation with a newly developed chiral reagent, succinimidyl ester of l-α-methoxy-α-methyl-1-naphthaleneacetic acid. The yielded diastereomers were separated on the μPorasil column with cyclohexane/ethyl acetate (3:1) exhibiting satisfactory k' and R values. The clean-up procedure by use of Sep-pak C18 and carboxymethyl Sephadex LH-20 (CM-LH-20) proved to be effective for determination of the drug in biological fluids by HPLC. The plasma levels of d- and l-DOM after administration of the racemate to the rabbit were determined by the method thus established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号