首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(X) (polyriboxanthylic acid) gives up to two differential pulse voltammetric oxidation peaks (peaks I and II) at the PGE. Xanthine, which appears to be a trace contaminant of commercial poly(X) samples, exhibits a differential pulse voltammetric oxidation peak at more negative potentials than the peaks of poly(X). Xanthosine-5'-monophosphate also gives up to two differential pulse voltammetric oxidation peaks at the PGE. An analytical method has been developed to determine trace amounts of xanthine and xanthosine-5'-monophosphate in poly(X) samples based on differential pulse voltammetry.  相似文献   

2.
Erdem A  Karadeniz H  Caliskan A 《The Analyst》2011,136(5):1041-1045
The development of amino-terminated G4 PAMAM dendrimer (PDR) modified disposable electrodes were developed as the first time in our study by using the dendrimer modified disposable graphite (PDR-PGE) and multiwalled carbon nanotube based screen-printed graphite (PDR-MWCNT-SPE) electrodes. Firstly, the microscopic characterization of bare PGEs and PDR modified PGEs was performed. These sensors were then applied for electrochemical monitoring of an anticancer drug, Daunorubicin (DNR). The enhanced oxidation signal of DNR was measured at +0.50 V by using differential pulse voltammetry (DPV) in combination with the PDR-PGEs. The detection limit, estimated from S/N = 3, corresponds accordingly to 317 nM and 128 nM for DNR respectively at the PGE and PDR-PGE. The voltammetric results were consistent with electrochemical impedance spectroscopy (EIS) that was used to characterize the successful modification of PDR onto the surface of PGE and MWCNT-SPE.  相似文献   

3.
The electrochemical oxidation of the three fluoroquinolone drugs FQs: gatifloxacin GTF, moxifloxacin MXF and sparfloxacin SPF, at the bare and DNA‐modified glassy carbon electrodes has been studied by voltammetric techniques. The three FQs showed one irreversible oxidation peak at potential range 0.85–0.91 V vs. Ag‐AgCl, in phosphate buffer of pH 7.0. Differential pulse voltammetry (DPV) and UV‐absorption spectroscopic techniques were employed to probe the interaction between the FQs and calf thymus double stranded deoxyribonucleic acid (ds CT‐DNA). From electrochemical data, the binding constant between DNA and the gatifloxacin, moxifloxacin and sparfloxacin are calculated to be 3228, 2596 and 2857 M?1 respectively. Based on electrochemical and spectroscopic results, the mode of binding of fluoroquinolone to DNA through combined effect of intercalation and electrostatic interaction was concluded. A detection scheme based on a preconcentration and differential pulse voltammetric (DPV) determination at dsDNA modified glassy carbon electrode (DNA/GCE) was proposed for the trace determination of the studied analytes. The developed method was successfully applied to the determination of the FQs in pharmaceutical formulations.  相似文献   

4.
Dogan-Topal B  Ozkan SA 《Talanta》2011,83(3):780-788
The anticancer drug, leuprolide (LPR) bound to double-stranded fish sperm DNA (dsDNA) which was immobilized onto the surface of an anodically activated pencil graphite electrode (PGE), was employed for designing a sensitive biosensor. The interaction of leuprolide (LPR) with double-stranded DNA (dsDNA) immobilized onto pencil graphite electrode (PGE) have been studied by electrochemical methods. The mechanism of the interaction was investigated and confirmed by differential pulse voltammetry using two different interaction methods; at the PGE surface and in the solution phase. The decrease in the guanine oxidation peak current was used as an indicator for the interaction in acetate buffer at pH 4.80. The response was optimized with respect to accumulation time, potential, drug concentration, and reproducibility for both interaction methods. The linear response was obtained in the range of 0.20-6.00 ppm LPR concentration with a detection limit of 0.06 ppm on DNA modified PGE and between 0.20 and 1.00 ppm concentration range with detection limit of 0.04 ppm for interaction in solution phase method. LPR showed an irreversible oxidation behavior at all investigated pH values on a bare PGE. Differential pulse adsorptive stripping (AdSDPV) voltammetric method was developed for the determination of LPR. Under these conditions, the current showed a linear dependence with concentration within a range of 0.005-0.20 ppm with a detection limit of 0.0014 ppm. Each determination method was fully validated and applied for the analysis of LPR in its pharmaceutical dosage form.  相似文献   

5.
利用硼掺杂金刚石(BDD)电极通过循环伏安法和微分脉冲伏安法研究了阿昔洛韦在0.10 mol/L磷酸盐缓冲溶液(pH 7.4)中的电化学行为及其与DNA的相互作用.与玻碳电极相比,阿昔洛韦在BDD电极上的循环伏安曲线在1.17 V处的氧化峰电流更大,背景电流较低.根据峰电位随溶液pH值和扫描速率的变化趋势考察了阿昔洛韦...  相似文献   

6.
The ionic liquid (IL) modified chemically activated (CA) pencil graphite electrodes (PGEs) were developed for label‐free voltammetric detection of miRNA‐34a, and implemented to the real samples. Firstly, the electrochemical characterization of unmodified PGE, CA‐PGE, IL‐PGE and IL‐CA‐PGE was performed by cyclic voltammetry (CV) as well as their DNA binding capacity was studied by electrochemical impedance spectroscopy (EIS) technique. The microscopic characterization of the surface of each electrodes was investigated by scanning electron microscopy (SEM). Differential pulse voltammetry (DPV) technique was used for measuring the oxidation signal of guanine in order to perform a label‐free voltammetric monitoring of a full‐match hybridization specific to miRNA‐34a. The selectivity of biosensor was tested against to miRNA‐155, miRNA‐660 as well as to the mismatch sequence of miRNA‐34a. The further selectivity of this proposed biosensor was studied in the mixture of samples containing miRNA‐34a with other miRNAs (1 : 1). The voltammetric detection of miRNA‐34a was also explored in the artificial serum medium as fetal bovine serum (FBS) and also in total RNA samples isolated from HUH‐7 human hepatocellular carcinoma cell line.  相似文献   

7.
This paper describes oxidation of the isoquinoline alkaloid, protopine (PR) at a pyrolytic graphite electrode (PGE) using cyclic and square‐wave voltammetry. In the alkaline range (pH 7.5–10.5) of a Britton–Robinson (B–R) buffer, a PR oxidation can be observed as a well‐developed voltammetric peak around +0.9 V (vs. Ag|AgCl|3 M KCl). With increasing pH of the B–R buffer, the PR peak is shifted to less positive potentials. The acquired voltammetric data suggest that PR strongly adsorbs onto the surface of the pyrolytic graphite where it is subjected to irreversible electrochemical oxidation in its uncharged free (tricyclic) base form. The results are discussed in connection with the electrochemical oxidation of other isoquinoline alkaloids and the potential applications of these data.  相似文献   

8.
A graphitized mesoporous carbon modified glassy carbon electrode (GCE/GMC) prepared by drop coating method without any pre-anodization of the underlying GCE or external binder/matrix, has been demonstrated for simultaneous electrochemical oxidation of guanine (G) and adenine (A) at oxidation potentials 0.60 and 0.85 V vs. Ag/AgCl, respectively, in the presence of thymine (T) by differential pulse voltammetric method in pH 7 phosphate buffer solution. Control voltammetric experiments with unmodified GCE, graphite nanopowder and multiwalled carbon nanotube modified electrodes yielded either feeble or with high-background current responses. Interestingly, the GCE/GMC showed highly efficient, stable and well-defined voltammetric signals. Thymine oxidation signal noticed discretely at 1.15 V vs. Ag/AgCl on the GCE/GMC was not influenced for the simultaneous determination of G and A. Constructed DPV calibration graphs were linear in the range of 25–200 and 25–150 μM, respectively, for the G and A. Corresponding detection limit (S/N?=?3) values are 0.76 and 0.63 μM. Real sample analyses for the detection of G and A concentrations in calf-thymus DNA (detected [G]/[A] ratio?=?0.82), beef brain and beef liver were successfully demonstrated with recovery values ~100 %.  相似文献   

9.
Boron-doped diamond (BDD) electrodes have been examined for the electrochemical oxidation of underivatized-nucleic acids in terms of single stranded and double stranded DNA. Cyclic voltammetry and square wave voltammetry have been used to study the oxidation reactions and to detect DNA without derivatization or hydrolysis steps. At the diamond electrode, at least two well-defined voltammetric peaks were observed for both single stranded and double stranded DNA. Diamond electrode is the first material to show a well-defined voltammetric peaks for adenine group oxidation directly in the helix structure of nucleic acid due to its wide potential window. For single stranded DNA, a third peak, related to the pyrimidine group oxidation was also observed. As-deposited diamond film with predominantly hydrogen-terminated surface exhibited superior performance over oxygen-terminated diamond in terms of sensitivity. However, by optimizing the ionic strength, sensitivity of O-terminated films could be improved. Linear calibration results have shown linearity of current with concentration in the range 0.1-8 microg mL(-1) for both guanine and adenine residues at as-deposited BDD. Detection limits (S/N = 3) of 3.7 and 10 ng mL(-1) for adenine and guanine residue in single stranded DNA, respectively, and 5.2 and 10 ng mL(-1) for adenine and guanine residue in double stranded DNA, respectively, were observed. This work shows the promising use of diamond as an electrochemical detector for direct detection of nucleic acids. The results also show the possibility of using the oxidation peak current of adenine group that is more sensitive for the direct detection of nucleicacids.  相似文献   

10.
Yılmaz S  Uslu B  Ozkan SA 《Talanta》2001,54(2):351-360
A voltammetric study of the oxidation of etodolac has been carried out at the glassy carbon electrode. The electrochemical oxidation of etodolac was investigated by cyclic, linear sweep, differential pulse and square wave voltammetry using glassy carbon electrode. Different parameters were tested to optimize the conditions for the determination of etodolac. The dependence of intensities of currents and potentials on pH, concentration, scan rate, nature of the buffer was investigated. For analytical purposes, a very well resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 2.15 for differential pulse and square wave voltammetric techniques. The linear response was obtained in the ranges of 2.10(-6)-8.10(-5) M with a detection limit of 6.8x10(-7) and 6x10(-6)-8x10(-5) M with a detection limit of 1.1x10(-6) M for differential pulse and square wave voltammetric techniques, respectively. Based on this study, simple, rapid, selective and sensitive two voltammetric methods were developed for the determination of the etodolac in tablet dosage form and human serum.  相似文献   

11.
啶虫脒本身不具有电化学性质,而其在NaOH溶液中的水解产物为电活性物质。采用循环伏安法(CV)、示差脉冲伏安法(DPV)研究了啶虫脒水解产物在碳糊电极上的电化学行为,并初步探讨了其反应机理。在pH9.0的磷酸盐缓冲液(PBS)中,啶虫脒水解产物在约0.9 V(vs.SCE)产生一灵敏的氧化峰,表明电极反应是受扩散控制的不可逆氧化过程。基于啶虫脒水解产物的氧化行为,以0.9 V为工作电位,采用计时安培法进行测定,其响应电流与啶虫脒的浓度在2.0×10-7~2.8×10-5mol/L范围内呈良好的线性关系,方法的检出限为1.0×10-7mol/L。该方法成本低、操作方便、重复性好,对人体与环境无毒害,将其用于啶虫脒实际样品的测定,结果满意。  相似文献   

12.
《Electroanalysis》2017,29(10):2292-2299
In this present study, single‐walled carbon nanotubes (SWCNT) modified disposable pencil graphite electrodes (SWCNT‐PGEs) were developed for the electrochemical monitoring of anticancer drug, and its interaction with double stranded DNA (dsDNA). Under this aim, SWCNT‐PGEs were applied for the first time in the literature to analyse of 6‐Thioguanine (6‐TG), and also to investigate its interaction with DNA by voltammetric and impedimetric methods. The surface morphologies of PGE and SWCNT‐PGE were explored using scanning electron microscopy (SEM) and electrochemical characterization of unmodified/modified electrodes was performed by cyclic voltammetry (CV). Experimental parameters; such as, the concentration of 6‐TG and its interaction time with dsDNA were optimized by using differential pulse voltammetry (DPV). Additionally, the interaction of 6‐TG with dsDNA was studied in case of different interaction times by electrochemical impedance spectroscopy (EIS) in contrast to voltammetric results. The detection limit of 6‐TG was found to be 0.25 μM by SWCNT‐PGE.  相似文献   

13.
In this study, we have performed the preparation of over-oxidized poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode (Ox-PEDOT-nf/PGE) to develop a selective and sensitive voltammetric uric acid (UA) sensor. It was noted that the over-oxidation potential and time had a prominent effect on the UA response of the Ox-PEDOT-nf/PGE. Characterizations of PEDOT-nf/PGE and Ox-PEDOT-nf/PGE have been performed by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The highest voltammetric response of UA was obtained at pH 2.0. A linear relationship between the concentration of UA and oxidation peak currents was observed in the concentration range of 0.01–20.0 μM. The detection limit (1.3 nM according to S/N = 3) and reproducibility (RSD: 4.6 % for N:10) have also been determined. The effects of different substances on the determination of UA have been investigated. A very high peak separation value of 423 mV was obtained between UA and ascorbic acid which is the major interfering substance for UA. The use of Ox-PEDOT-nf/PGE has been successfully tested in the determination of UA in human blood serum and urine samples for the first time in the literature.  相似文献   

14.
The electrochemical oxidation of ibuprofen at a boron‐doped diamond electrode (BDDE) and its voltammetric determination is reported for the first time. A well‐defined oxidation peak was observed at around 1.6 V in 0.1 mol L?1 H2SO4 solution with 10 % (v/v) ethanol at the BDDE surface activated by either cathodic or anodic pretreatments. A differential‐pulse voltammetric method for the determination of ibuprofen in pharmaceutical formulations was optimized with a detection limit of 5 µmol L?1 and compared with the British Pharmacopeia method.  相似文献   

15.
This study describes the oxidation of sanguinarine (SG) and its metabolite dihydrosanguinarine (DHSG) on the surface of a basal‐plane pyrolytic graphite electrode (PGE). Since both alkaloids strongly adsorb onto the surface of pyrolytic graphite, measurements were performed using ex situ voltammetric methods, adsorptive transfer (AdT) cyclic voltammetry (CV) and square‐wave voltammetry (SWV). Oxidation peaks of SG (peak A) and DHSG (peak A*) were observed around the potential of +0.7 V (vs. Ag/AgCl/3 M KCl), depending on the experimental conditions. The voltammetric peaks A and A* are probably related to the oxidation of N‐methylphenanthridine nitrogenous heterocycle of SG and oxidation of DHSG back to SG, respectively. The electrochemical results and optimized AdT SWV were subsequently applied to the study of the interactions of SG and DHSG with DNA in vitro. Analysis of the alkaloid/DNA interactions was based on observing heights of oxidation peaks A and A* after incubation of SG and/or DHSG with supercoiled (sc) DNA [pBSK(?)]. Electrochemical study of the interactions was supported and complemented with measurements using gel electrophoresis (Topoisomerase I scDNA relaxation assay) and steady‐state and time‐resolved fluorescence spectroscopy. The results suggest that SG intercalates into the double‐stranded structure of scDNA (the SG/base pair ratio is max. 1/4) while increased binding affinity was observed for quaternary cation (SG+). DHSG which, unlike SG+, does not possess a strictly planar molecular structure, did not show intercalative DNA binding in any of the three methods applied.  相似文献   

16.
MutS, a protein involved in DNA mismatch repair, recognizes mispaired and unpaired bases in duplex DNA. We have previously used MutS in an electrochemical double-surface technique (DST) for in-vitro detection of point mutations in DNA. The DST involved binding of unlabeled MutS to DNA heteroduplexes at the surface of magnetic beads followed by a highly sensitive electrochemical determination of the protein by measurement of a catalytic protein signal (peak H) at mercury electrodes. Detection of MutS using a peak resulting from oxidation of tyrosine and tryptophan residues of the protein at a carbon-paste electrode (CPE) was also possible but was approximately three orders of magnitude less sensitive. In this work we present an optimized technique for ex-situ voltammetric determination of MutS at a CPE. Choice of optimum experimental conditions (pH of supporting electrolyte, square-wave voltammetry settings, etc.) resulted in substantial improvement of the sensitivity of the assay, enabling detection of approximately 140 pg (1.6 fmol protein monomer) MutS in a 5-μL sample. The sensitivity was increased further by acid hydrolysis of the protein before measurement. The hydrolyzed protein was detectable down to 5 pg (approx. 56 amol) MutS in 5 μL solution. By using the DST combined with determination of the bound unlabeled MutS at the CPE we demonstrated selective interactions of the protein with single-base mismatches and discrimination among different base mispairs in 30-mer or 95-mer DNA duplexes. In agreement with previous studies, binding of the protein to the 30-mer substrates followed the trend G:T>>C:A>A:A>C:T>homoduplex. The electrochemical data were confirmed by use of an independent technique—a quartz-crystal microbalance for real-time monitoring of MutS interactions with DNA duplexes containing different base mispairs. By using the electrochemical DST a G:T mismatch was detectable in up to 1000-fold excess of homoduplex DNA.  相似文献   

17.
The present study explores an electroreduced graphene oxide-bismuth nanoparticles composite(ErGOBi) as an electrochemical sensor for the determination of an anticancer drug, gemcitabine hydrochloride(GMB). The Er-GOBi interface was prepared by drop casting of bismuth nitrate-graphene oxide suspension on a glassy carbon electrode(GCE) followed by electro-reduction in the potential range of 0.6 V to 1.7 V. SEM, FTIR, EDAX and AFM techniques were employed for the characterization of prepared materials. Cyclic voltammetric and electrochemical impedance spectroscopic methods were used to understand the charge transfer properties of stepwise modification of Er-GOBi/GCE. GMB exhibited an irreversible oxidation peak at 1.144 V on Er-GOBi/GCE in phosphate buffer of p H 3. A 100-fold enhanced oxidation peak current was observed at Er-GOBi/GCE when compared to that at bare GCE.Sensing performance of Er GO-Bi/GCE was optimized by varying peak current dependent parameters.Linear relationship between the peak current and concentration of GMB was observed in the range of 0.1–51.1 mmol/L in differential pulse voltammetric method and 2.1–61.1 mmol/L in linear sweep voltammetric method. The practical utility of the proposed sensor, Er-GOBi/GCE was demonstrated by determining GMB in pharmaceutical formulations and spiked urine samples.  相似文献   

18.
将镍纳米粒子与石蜡、石墨按照一定比例混合制备镍纳米粒子修饰碳糊电极,采用循环伏安法(CV)对修饰碳糊电极进行电化学表征,在0.1 mol/L B-R缓冲溶液(pH4.5)中研究了鸟嘌呤在该修饰电极上的电化学行为。结果表明,与裸碳糊电极相比,以掺杂法制备的镍纳米粒子修饰电极能够明显降低鸟嘌呤的过电位,增大其氧化电流,很好地催化氧化鸟嘌呤。在优化的实验条件下,鸟嘌呤在该修饰电极上的氧化峰电流与其浓度在1.0×10-5~5.0×10-4mol/L范围内呈良好的线性关系,检出限(3σ)为7.5×10-6mol/L。  相似文献   

19.
Abbaspour A  Noori A 《The Analyst》2012,137(8):1860-1865
A novel label-free electrochemical DNA hybridization biosensor using a β-cyclodextrin/poly(N-acetylaniline)/carbon nanotube composite modified screen printed electrode (CD/PNAANI/CNT/SPE) has been developed. The proposed DNA hybridization biosensor relies on the intrinsic oxidation signals of guanine (G) and adenine (A) from single-stranded DNA entered into the cyclodextrin (CD) cavity. Due to the binding of G and A bases to complementary cytosine and thymine bases in dsDNA, the signals obtained for ssDNA were much higher than that of dsDNA. The synergistic effect of the multi-walled carbon nanotubes provides a significantly enhanced voltammetric signal, and the CD encapsulation effect makes anodic peaks of G and A shift to less positive potentials than that at the bare SPE. The peak heights of G and A signals are dependent on both the number of the respective bases in oligonucleotides and the concentration of the target DNA sequences. Hybridization of complementary strands was monitored through the measurements of oxidation signal of purine bases, which enabled the detection of target sequences from 0.01 to 1.02 nmol μl(-1) with the detection limit of target DNA as low as 5.0 pmol μl(-1) (S/N = 3). Implementation of label-free and homogeneous electrochemical hybridization detection constitutes an important step toward low-cost, simple, highly sensitive and accurate DNA assay. Discrimination between complementary, noncomplementary, and two-base mismatch targets was easily accomplished using the proposed electrode.  相似文献   

20.
在抗坏血酸存在下用L-赖氨酸修饰玻碳电极测定多巴胺   总被引:3,自引:0,他引:3  
黄燕生  陈静  许兵  邵会波 《化学通报》2006,69(9):656-660
采用电化学氧化法制备了L-广赖氮酸单分子层修饰玻碳电极,研究了多巴胺(DA)和抗坏血酸(AA)在该电极上的电化学行为。结果表明,L-广赖氨酸单分子层修饰玻碳电极不仅能改善多巴胺和抗坏血酸的电化学行为,而且能将多巴胺和抗坏血酸二者在裸电极上的完全重叠的单氧化峰分开成为两个完全独立的氧化峰,循环伏安(CV)图上峰间距为507mV,差分脉冲伏安(DPV)图上峰间距为460mV,由此可实现在AA的共存下对样品中的DA进行选择性测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号