首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anodic oxidation of a dropping copper amalgam electrode in presence of dilute solutions of glycine in 0.50 M NaClO4 has been studied. An anodic wave at ?0.28V (SCE) is observed, yielded by diffusion of glycinate anion in the solution towards the electrode surface. The wave-heights increase with the glycinate concentration (function of glycine concentration and pH value) until the anodic oxidation is controlled by the metal diffusion into mercury. The effect of pH is interpreted by attributing it to the depolarizer effects at glycinate anion even though the zwitterion is present in much larger concentrations. The applicability of anodic oxidation of a dropping copper amalgam electrode in the determination of glycine in the range of concentrations 10?4–10?2M with a rigorous control of pH (8.0<pH<10.5) is shown. The standard deviation of the proposed method is 4.1% and the minimum concentration determinable is in the 1×10?4M range.  相似文献   

2.
The reduction and reoxidation processes of the Fe(II)/Fe(Hg) system in thiocyanate solutions at stationary mercury electrodes have been investigated by cyclic voltammetric, anodic stripping and controlled potential electrolysis methods. In 0.1 M NaSCN and 0.4 M NaClO4 solution containing 1×10?3M Fe(II), the voltammogram on the first cycle at. 0.05 V s?1 gives two consecutive cathodic peaks near ?1.2 and ?1.39 V with a hysteresis on the reversal, and an anodic wave with two large peaks near ?0.58 and ?0.05 V and two small peaks near ?0.52 and ?0.43 V, respectively. The multicyclic voltammogram under the same conditions in the potential region between 0.00 and ?1.50 V gives a cathodic wave with a principal peak near ?1.02 V and two small peaks near ?0.02 and ?0.53 V, respectively, and an anodic wave with a principal peak near ?0.72 V, three small peaks near ?0.64, ?0.52 and ?0.40 V, and with a shoulder near ?0.05 V, respectively. The variation of the shape of the voltammogram on the second and subsequent runs is due to the formation of S2? and CN? during the process of electroreduction of Fe(II). A mechanism is proposed which involves an initial reduction of Fe(II)?SCN? produced in an activation step at a mercury electrode, followed by the chemical redox reaction of a part of Fe(0)?SCN? in the species giving FeS and CN?, and takes into account the influence of FeS and CN? on the further reduction and reoxidation of iron. Both FeS and CN? stimulate further reduction, and reoxidation of iron. The hysteresis of the cathodic wave on the first cycle arises from the fact that Fe(II) is reduced more easily at the mercury electrode covered with FeS than at a pure mercury electrode.  相似文献   

3.
《Electroanalysis》2006,18(12):1202-1207
A new type of current sensor, Langmuir–Blodgett (LB) film of calixarene on the surface of glassy carbon electrode (GCE) was prepared for determination of mercury by anodic stripping voltammetry (ASV). An anodic stripping peak was obtained at 0.15 V (vs. SCE) by scanning the potential from ?0.6 to +0.6 V. Compared with a bare GCE, the LB film coated electrode greatly improves the sensitivity of measuring mercury ion. The fabricated electrode in a 0.1 M H2SO4+0.01 M HCl solution shows a linear voltammetric response in the range of 0.07–40 μg L?1 and detection limit of 0.04 μg L?1 (ca. 2×10?10 M). The high sensitivity, selectivity, and stability of this LB film modified electrode demonstrates its practical application for a simple, rapid and economical determination of Hg2+ in a water sample.  相似文献   

4.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

5.
The intermetallic CuZn compounds produced during the simultaneous deposition of copper and zinc at a preformed mercury film electrode were studied. Over a wide range of metal concentration ratios, the real concentrations of metals in the amalgam were calculated from the peak areas obtained by anodic stripping voltammetry. The results indicate the formation of CuZn (insoluble) and CuZn2 (soluble) compounds with Kso=5×10?4 and β2=100, respectively. The electrodeposition potential of ?0.85 V vs. SCE for the reduction of copper in presence of zinc is confirmed as correct.  相似文献   

6.
The electrochemical oxidation of the alkaloid laudanosine (Ia) to O-methylflavinantine (II) has been studied in acetonitrile solvent. Using cyclic voltammetry, rotating disc voltammetry and preparative electrolyses on several alkaloids, simple aliphatic amines and aromatic compounds, some aspects of the mechanism of this coupling reaction are elucidated. The first anodic wave for laudanosine at platinum has Ep=0.55 V vs. Ag/Ag+. The electrode rapidly becomes partially passivated at potentials above 0.5 V. This is due to a film which “dissolves” below 0.5 V, at a rate independent of the potential. It is shown that the reaction (Ia)→(II) proceeds at 0.5 V by initial oxidation of the amine moiety. If acids such as sodium bicarbonate are added to the anolyte the amine is protonated causing the first wave to disappear. Oxidation at 1.1 V under these acidic conditions produces the same product, but more rapidly and in significantly higher yield because electrode filming and side reactions resulting from the amine oxidation are abrogated.  相似文献   

7.
Admittance measurements were applied to investigation of the charge-transfer rate and mechanism of anodic complex formation between mercury and macrobicyclic ligand (222) as well as to the cathodic reduction of Hg2+-(222) complex formed in the bulk. From measurements in PC and DMF using adsorbable and non-adsorbable base electrolyte anions it was shown that the reactant adsorption effects are observable only if adsorption of ClO4? and (222) takes place at the same time. Corresponding charge-transfer rates were evaluated and potential dependence of the adsorption capacity for two ligand concentrations was given. At the half-wave potential apparent rate constants k1/2 listed below were found (data from Fig. 9).  相似文献   

8.
The reduction of heptaphenyltropylium ion (HPT+) in acetonitrile solutions containing 0.1 M tetra-n-butylammonium perchlorate at a platinum electrode was studied by cyclic voltammetry and controlled potential coulometry. A reversible wave for the production of the free radical at ?1.20 V vs. SCE was observed. The radical was stable on the voltammetric time scale (~ seconds) but decayed slowly. The production of a dimeric species involving coupling via the phenyl groups and reducible at about ?1.9 V is proposed.  相似文献   

9.
A new method for enhancing the electrochemiluminescence (ECL) intensity of the Ru(bpy)3 2+/ oxalate system is presented. When a platinum net was used as a working electrode and a platinum foil as an auxiliary electrode, the ECL intensity of the system was enhanced greatly. In addition, a cathodic peak appeared at 0.18 V (vs. SCE) on a platinum net electrode, and ECL of the system was observed at 0.18 V.  相似文献   

10.
Ferrocene solubilized with poly(vinylpyrrolidone) in aqueous KCl solution exhibited a well-defined voltammetric peak at 1.33 V vs. Ag∣AgCl at a platinum electrode. The wave was attributed to the oxidation of chloride to chlorine, demonstrated by smell of chlorine, by a view of formation of gas bubbles, by coloration through the reaction with diethyl-p-phenylene diamine, and by the increase in the anodic current with the concentration of chloride. Since no wave was observed in the ferrocene-free solution or KCl-free solution in this potential domain, the reaction mechanism was suggested to be the oxidation of chloride into chlorine catalyzed by micellar ferrocene. The potential at the foot of the wave (1.08 V) was less positive that the standard potential of Cl2/Cl, and hence the reaction may be useful for enhancing the energetic efficiency at chlor-alkali industry. The value of the peak current was one-sixth the theoretical diffusion-controlled current, and was proportional to the square-root of the potential scan rate.  相似文献   

11.
《Electroanalysis》2004,16(19):1592-1597
The electrochemical redox processes of pyridoxine hydrochloride (VB6) at a poly(methylene blue) film modified glass carbon electrode (PMBE) in a phosphate buffer solution (PBS, pH 8.0) were studied by cyclic voltammetry. The VB6 electrode reaction with quasi‐reversible characteristics was diffusion‐controlled at low scan rates and adsorption‐controlled at high scan rates. The anodic peak current positive to 0.6 V (vs. SCE) was found to be proportional to the concentration of VB6 in the range of 0.010 to 1.03 mg?mL?1 with a detection limit of 1.34 μg mL?1. Fluorescence and UV‐vis absorption spectroelectrochemical measurements suggest that the pyridine ring was not destroyed over the potential range from ?0.8 to 1 V (vs. SCE), and the electrocatalytic generation of pyridoxal was anodically started at 0.57 V.  相似文献   

12.
The process of reduction and reoxidation of cobalt(II) in thiocyanate solution at hanging mercury drop electrode has been investigated by cyclic voltammetric, chronoamperometric and anodic stripping methods. In 0.1 M NaSCN and 0.4 M NaClO4 solution containing 1×10?3M cobalt(II), the voltammogram on the first cycle at 0.05 V s?1 gives a cathodic peak at ?1.06 V with hysteresis on reversal, and an anodic wave with a peak potential of ?0.28 V and with two shoulders near ?0.38 and ?0.45 V, respectively. Multicyclic voltammograms under the same conditions give a cathodic peak at ?0.90 V and an anodic peak at ?0.45 V. The reduction and reoxidation of cobalt(II) in thiocyanate solution is accelerated by the reduction products of thiocyanate ion, cyanide and sulphide ions, which are produced during the electroreduction of cobalt(II).A mechanism of reduction and reoxidation of cobalt(II) which involves a chemical reduction of thiocyanate ion by electroreduced metallic cobalt and takes into account cyanide and sulphide ions is proposed. The hysteresis on the cathodic wave is caused by the difference in reduction potentials of cobalt(II)-thiocyanate and-cyanide complexes. Cyclic voltammetric study of cobalt(II) in perchlorate solution containing trace amounts of cyanide and sulphide ions supports these conclusions.  相似文献   

13.
A bulk modified electrode prepared by pressing a mixture of carbon powder and diphenylcarbazone at 15.2 MPa was used for the determination of mercury in aqueous solutions. Mercury(II) ions are concentrated by complexation with the modifier in acidic (HNO3) solution. After exchange of the medium for 1 M HCl and 1 M CaCl2, mercury is reduced at ?0.8 V vs. SCE. The signal is generated by anodic stripping in the differential-pulse mode. The calibration graph is linear in the range 5×10?8?5× 10?6 M with a relative standard deviation of 7%. After enrichment for 10 min the detection limit is 5×10?8 M. Silver, chromate and strong complexing agents interfere. The use of the electrode to determine the labile fraction in mercury speciation is discussed.  相似文献   

14.
Dialkyldithiocarbamates give only a one-electron anodic wave. The various adsorption phenomena are probably caused by varying orientation of the mercury compounds on the electrode surface; the irregular i-t curves recorded at —0.04 V and the anomalous behaviour of the anodic current between +0.2 V and —0.4 V can be interpreted as the behaviour of an adsorbed film at the electrode. Analytical measurements are best made in 60% ethanolic 0.1 M sodium hydroxide media at concentrations of about 10-5 M dialkyldithiocarbamate; a method is given for the analysis of the monoalkyl and dialkyl compounds in mixtures.  相似文献   

15.
聚邻甲苯胺的合成及物理化学性质   总被引:1,自引:0,他引:1  
聚苯胺的导电性和电化学特性已被广泛地研究。最近,对苯胺衍生物的聚合物也开始了研究,如聚邻甲氧基苯胺、聚邻苯二胺和聚邻氨基酚,其中聚邻甲氧基苯胺是一种可溶性的导电高分子材料。为了探讨苯胺聚合的机理和苯胺上不同基团对聚苯胺性质的影响,我们使用了十六种苯  相似文献   

16.
We characterized the electrocatalytic activity of platinum electrode modified by underpotential deposited lead (PtPbupd) for a formic acid (HCOOH) oxidation and investigated the influence on the power performance of direct formic acid fuel cells (DFAFC). Based on the electrochemical analysis using cyclic voltammetry and chronoamperometry, PtPbupd electrode modified by underpotential deposition (UPD) exhibited significantly enhanced catalytic activity for HCOOH oxidation below anodic overpotential of 0.4 V (vs. SCE). Multi-layered PtPbupd electrode structure of Pt/Pbupd/Pt resulted in more stable and enhanced performance using 50% reduced loading of anode catalyst. The performance of multi-layered PtPbupd anode is about 120 mW/cm2 at 0.4 V and it also showed a sustainable cell activity of 0.52 V at an application of constant current loading of 110 mA/cm2.  相似文献   

17.
A new sensor has been developed for the simultaneous detection of cadmium, lead, copper and mercury, using differential pulse and square wave anodic stripping voltammetry (DPASV and SWASV) at a graphite–polyurethane composite electrode with SBA‐15 silica organofunctionalized with 2‐benzothiazolethiol as bulk modifier. The heavy metal ions were preconcentrated on the surface of the modified electrode at ?1.1 V vs. SCE where they complex with 2‐benzothiazolethiol and are reduced to the metals, and are then reoxidized. Optimum SWASV conditions lead to nanomolar detection limits and simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ in natural waters was achieved.  相似文献   

18.
The electrochemical processes of irreversibly adsorbed antimony (Sbad) on Au electrode were investigated by cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM). CV data showed that Sbad on Au electrode yielded oxidation and reduction features at about 0.15 V (vs saturated calomel electrode, SCE). EQCM data indicated that Sbad species were stable on Au electrode in the potential region from −0.25 to 0.18 V (vs SCE); the adsorption of Sb inhibited the adsorption of water and anion on Au electrode at low electrode potentials. Sb2O3 species was suggested to form on the Au electrode at 0.18 V. At a potential higher than 0.20 V the Sb2O3 species could be further oxidized to Sb(V) oxidation state and then desorbed from Au electrode.  相似文献   

19.
ABSTRACT

In this approach, a new carbon paste electrode modified with N,N′-bis(5-bromo-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine Schiff base ligand (L) was synthesised for selective and effective determination of Hg2+ ions in aqueous environmental samples using cyclic and square wave anodic stripping voltammetric methods. First, the selective detection of mercury ion was confirmed by evaluating the stability constants of metal complexes formed between the Schiff base ligand (L) and some desired cations by conductometric measurements. Afterwards, by preparing an effective carbon paste electrode modified with L, the experimental and instrumental parameters affecting the performance of modified electrode were investigated. Square wave anodic stripping voltammograms were obtained after applying an accumulation potential ?0.5 V and accumulation time 150 s in Britton–Robinson buffer solution at pH 2.0. The optimal square wave parameters found are pulse amplitude 75 mV, frequency 50 Hz and step potential 6 mV. The procedure exhibited linear range from 0.4 to 120 μg L?1 Hg2+ with a limit of detection of 0.042 μg L?1. The proposed electrode was proved to be highly selective in the presence of various cations and anions and was successfully used for determination of mercury in tobacco and several water samples.  相似文献   

20.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号