首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The electromotive force measurements of the cell Pt, H2 (gas, 1 atm); HCl (m), X % Bu tOH, Y% H2O; AgCl, Ag, at nine different temperatures ranging from 15 to 55°C at 5° intervals, have been used to determine the standard potentials of the silver-silver chloride electrode in eighteen tert-butyl alcohol+water solvent mixtures containing up to 90 wt. % alcohol. The standard molal potentials in each solvent have been represented as a function of temperature. The standard thermodynamic functions for the cell reaction, the primary medium effects of various solvents upon HCl, and the standard thermodynamic quantities for the transfer of one mole of HCl from water to tert-butyl alcohol+water media have been evaluated. The results have been discussed in the light of ion-solvent interactions as well as the structural changes of the solvents.  相似文献   

2.
The standard potentials of the Ag—AgI electrode in twenty ethylene glycol—water mixtures covering the whole range of solvent composition have been determined from the e.m.f. measurements of the cell Pt¦H2(g, 1 atm)¦HOAc (m 1), NaOAc (m 2), KI(m 3), solvent¦AgI¦Ag at nine different temperatures ranging from 15 to 55°C. The temperature variation of the standard e.m.f. has been utilized to compute the standard thermodynamic functions for the cell reaction, the primary medium effects of various solvents upon HI, and the standard thermodynamic quantities for the transfer of HI from the standard state in water to the standard states in the respective solvent media. The chemical effects of solvents on the transfer process have been obtained by subtracting the electrostatic contributions from the total transfer quantities. The results have been discussed in the light of ion—solvent interactions as well as the structural changes of the solvents.  相似文献   

3.
The emf (electromotive force) of the cell: CdHgx (two phase) | CdCl2 (m) | AgCl | Ag in 2-butanone + water mixtures (containing 5, 10, and 15 mass% 2-butanone) was measured at varying temperature (293.15, 298.15, 303.15, 308.15, and 313.15 K) and in the CdCl2 molality range from 0.002 to 0.02 mol-kg–1. At each temperature the standard emf of the cell (Emo) was determined using potentiometric data and literature values for the stability constants of chlorocadmium complexes. The Emo values were used to calculate the standard thermodynamic quantities for the cell reaction, the stoichiometric mean molal activity coefficients of CdCl2, and the thermodynamic functions for CdCl2 transfer from water to 2-butanone + water mixtures. The transfer process is a forced one and results in an entropy decrease. The transfer functions were compared to those obtained for the same electrolyte in acetone + water mixtures, as well as to those for HBr in ketone + water mixtures. Medium effects upon CdCl2 were calculated and discussed for the examined mixtures (2-butanone + water).  相似文献   

4.
The standard potentials of the silver-silver iodide electrode were measured in 10,20,30 and 40% (w/w) dioxane-water mixtures at 15,25,35 and 45°C. These values have been used to determine the thermodynamic quantities ΔGt°, ΔSt°, ΔHt° for the transfer of H+I? from water to various dioxane-water mixtures. The ionic ΔGt° values for H+, Cl?, Br? and I? are determined using Feakins method. The chemical and electrical contributions of ΔGt° are also calculated using the method proposed by Roy and co-workers. The significance of these thermodynamic functions is discussed in relation to the acid—base character of the solvents.  相似文献   

5.
The standard potentials of the silver-silver ion electrode in alcohol+water solvent mixtures containing 10 and 20 wt% methanol, ethanol, 1-propanol and 2-propanol have been determined from the electromotive force measurements of the cell Ag(s), AgCl(s), NaCl(c), NaNO3(c)// NaNO3(c), AgNO3(c), Ag(s) at seven different temperatures in the range 5–35°C. The standard potentials in each solvent have been represented as a function of temperature. The standard thermodynamic functions for the electrode reaction, the primary medium effects of various solvents upon Ag+, and the standard thermodynamic quantities for the transfer of 1 g-ion of Ag+ from water to the respective alcohol + water media have been evaluated and discussed in the light of ion-solvent interactions as well as the structural changes of the solvents. From the values of the standard potentials of the Ag/Ag+ and Ag/AgX, X? electrodes, the thermodynamic solubility product constants of silver chloride, silver bromide, silver iodide and silver thiocyanate have been determined in alcohol + water solvent mixtures at different temperatures.  相似文献   

6.
Standard potentials of the silver-silver chloride electrode in eighteen glycerol-water mixtures containing up to 90% by weight glycerol, have been determined from e.m.f. measurements of cells of the type Pt, H2 (gas, 1 atm); HCl (m), X% glycerol, Y% water; AgCl, Ag, at nine different temperatures in the range 15 to 55°C. The standard molal potential in the various solvent mixtures has been expressed as a function of temperature. Standard thermodynamic quantities for cell reaction and the primary medium effects of various solvents upon HCl were also calculated. The temperature variation of the standard potential was utilized to calculate the thermodynamic quantities for the transfer of one mole of HCl from water to glycerol-water media. The results have been interpreted in regard to the acid-base properties and the structure of the solvent.  相似文献   

7.
The standard potentials of the silver—silver tungstate, silver—silver phosphate and silver—silver arsenate electrodes in four different compositions of water—dioxane and water—urea mixtures at seven different temperatures from 5 to 35°C have been determined from EMF measurements of cells of the type Ag(s), AgCl(s), NaCl(c)//NaxZ(c/x), AgxZ(s), Ag(s), where x is 2 or 3, and Z is WO4, PO4 or AsO4. These values have been used to evaluate the transfer thermodynamic quantities accompanying the transfer of 1 g ion of WO2?4. PO3?4 or AsO3?4 ion from the standard state in water to the standard state in water—dioxane or water—urea mixtures.  相似文献   

8.
The standard molal potential differences (Em∘) have been determined for the cell: CdHgx(two phase) | CdCl2(m), H2O(1 − w), 2-butanol (w) | AgCl(s) | Ag(s) in aqueous mixtures of low mass fraction of 2-butanol (w2-butanol = 0.05, 0.10, and 0.15) by using the literature data for the stability constants of the chlorocadmium complexes and the present potentiometric data for this cell at five temperatures from (293.15 to 313.15) K and at 10 molalities of CdCl2 from (0.002 to 0.02) mol-kg−1. The resulting values of Em have been used to calculate the standard thermodynamic quantities (ΔrG, ΔrH, and ΔrS) for the cell reaction, the stoichiometric mean molal activity coefficients (γ±) of CdCl2, and the standard thermodynamic functions for CdCl2 transfer (Δt G∘, Δt H∘, and Δt S∘) from water to the examined aqueous mixtures of 2-butanol. The values obtained have been compared with the analogous literature data for aqueous mixtures of 2-butanone; standard thermodynamic quantities for transfer of CdCl2 and HBr from water to mixtures containing the same mass fraction of 2-butanol have also been compared. For both electrolytes, these quantities show analogous trends with the alcohol content. This transfer process is nonspontaneous and endothermic. Enthalpy and entropy are evidently influenced by structural changes.  相似文献   

9.
E.m.f. measurements on cells of the type Ag(s), AgCNS(s), KCNS(c)//KCl(c), AgCl(s), Ag(s) in four different composition of urea—water mixtures at seven different temperatures from 5 to 35°C have been made to determine the standard potentials of the silver—silver thiocyanate electrode in these media. These values have been used to evaluate the transfer thermodynamic quantities accompanying the transfer of 1 g ion of CNS? ion from the standard state in water to the standard state in urea—water mixtures.  相似文献   

10.
The solubility and solubility product of silver permanganate in water have been determined at the temperatures ranging from 15 to 35°C over 5°C intervals in the presence of an added electrolyte, sodium perchlorate. The solubility of silver permanganate ranges from 0.966 x 10?5 mol 1?1 at 15°C to 1.420x10?5 moll?1 at 35°C and the corresponding solubility product 0.933 x 10?10 mol2 1?2 at 15°C to 2.017 x 10?10 mol2 1?2 at 35°C. The standard potentials of the Ag(s)/AgMnO4(s)/ MnO?4 electrode have been calculated at these temperatures. The mean activity coefficients of silver permanganate at various rounded molarities of sodium perchlorate solutions, and the standard thermodynamic quantities for the process AgMnO4(s)→Ag+ (aq)+MnO?4(aq) have been calculated at these temperatures.  相似文献   

11.
《Thermochimica Acta》1987,119(2):337-345
From the electromotive force measurements of cells with liquid-junction potentials, the standard potentials of the silver, silver-silver halide, silver-silver pseudohalide and silver-silver oxyhalide electrodes have been determined in 10 and 20 wt.% t-butyl alcohol-water mixtures at 5, 15. 25 and 35 °C. The values of the standard potentials have been used to evaluate the primary medium effects and the standard thermodynamic functions for the transfer of the ion from water to the respective solvent media. The results have been discussed in relation to the breakdown of the structure of water on the addition of t-butyl alcohol.  相似文献   

12.
From measurements of the electromotive force of the Pt, H2 (gas, 1 atm); HCl (m), X% methanol, Y% water; AgCl, Ag cells at nine temperatures from 15 to 55°C at 5° intervals, the standard potential of the silver-silver chloride electrode has been determined over a broad range of methanol concentrations (0–90 wt. % methanol). The standard molal potential in the various solvent mixtures has been expressed as a function of temperature. The primary medium effects of various media on hydrochloric acid, and the standard thermodynamic quantities accompanying the transfer of HCl from water to the respective solvent media have been computed. The results have been discussed both in terms of the acid-base behaviour of the solvent mixtures and also their structural effects on the transfer process.  相似文献   

13.
The standard potentials of the silver, silver bromide electrode have been determined in 1,2-dimethoxyethane (DME) and in nineteenDME + water solvents from the e.m.f. measurements of cells of the type Pt|H2(g, 1 atm)|HBr (m), solvent|AgBr|Ag at intervals of 5°C from 5 to 45°C. The molality of HBr covered the range from 0.01 to 0.1 mol kg–1. In solvents of highDME content, where the dielectric constant is small, it was necessary to correct for ion-pair formation. The temperature variation of the standard potential has been used to evaluate the standard thermodynamic functions for the cell reaction, and the standard quantities for the transfer of HBr from water to the respective solvents. The results have been discussed both in relation to the acid-base nature of the solvent mixtures and also their structural effects on the transfer process.
Standardpotentiale der Silber, Silberbromid-Elektrode und thermodynamische Eigenschaften von H Br in 1,2-Dimethoxyethan und 1,2-Dimethoxyethan—Wasser-Mischungen
Zusammenfassung Die Standardpotentiale der Silber, Silberbromid-Elektrode wurden in 1,2-Dimethoxyethan (DME) und in 19 verschiedenenDME—Wasser-Gemischen aus EMK-Messungen der Zelle Pt|H2(g,1 atm)|HBr (m), Lsgsm.|AgBr|Ag in Temperaturintervallen von 5°C zwischen 5 und 45°C bestimmt. Die Molalität von HBr deckte den Bereich von 0,01 bis 0,1 mol kg–1. Bei Lösungen mit höheremDME-Gehalt — und damit niedrigen Dielektrizitätskonstanten —war es nötig, für die Bildung von Ionenpaaren eine Korrektur einzuführen. Über die Temperaturvariation wurden die thermodynamischen Größen für die Zellenreaktion und die Standardgrößen für den Transfer von HBr aus Wasser in das jeweilige Lösungsmittel bestimmt. Die Ergebnisse werden sowohl im Zusammenhang zur Säure-Base-Natur de Lösungsmittelmischungen als auch in bezug auf strukturelle Effekte im Transferprozeß diskutiert.
  相似文献   

14.
The complexation reaction between Y3+ cation with N-phenylaza-15-crown-5(Ph-N15C5) was studied at different temperatures in acetonitrile–methanol (AN/MeOH), acetonitrile–propanol (AN/PrOH), acetonitrile–1,2 dichloroethane (AN/DCE) and acetonitrile–water (AN/H2O) binary mixtures using the conductometric method. The results show that in all cases, the stoichiometry of the complex is 1:1 (ML). The values of formation constant of the complex which were determined using conductometric data, show that the stability of (Ph-N15C5.Y)3+ complex in pure solvents at 25?°C changes in the following order: PrOH?>?AN?>?MeOH and in the case of binary mixed solutions at 25?°C it follows the order: AN–DCE?>?AN–PrOH?>?AN–MeOH?>?AN–H2O. The values of standard thermodynamic quantities (?H c ° and ?S c ° ) for formation of (Ph-N15C5.Y)3+ complex were obtained from temperature dependence of the formation constant using the van’t Hoff plots. The results show that in most cases, the complex is entropy and enthalpy stabilized and these parameters are influenced by the nature and composition of the mixed solvents. In most cases, a non-linear behavior was observed for variation of log Kf of the complex versus the composition of the binary mixed solvents. In all cases, an enthalpy–entropy compensation effect was observed for formation of (Ph-N15C5.Y)3+ complex in the binary mixed solvents.  相似文献   

15.
The solubilities of sulfadiazine (SD), sulfamerazine (SMR) and sulfamethazine (SMT) in some 1-propanol + water co-solvent mixtures were measured at five temperatures from 293.15 to 313.15 K over the polarity range provided by the aqueous solvent mixtures. The mole fraction solubility of all these sulfonamides was maximal in the 0.80 mass fraction of 1-propanol solvent mixture (δ solv = 28.3 MPa1/2) and minimal in water (δ = 47.8 MPa1/2) at all temperatures studied. The apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution were obtained from these solubility data by using the van’t Hoff and Gibbs equations. Apparent thermodynamic quantities of mixing were also calculated by using the ideal solubilities reported in the literature. Nonlinear enthalpy–entropy relationships were observed for these drugs in the plots of enthalpy versus Gibbs energy of mixing. The plot of ?mix H° versus ?mix G° shows different trends according to the slopes obtained when the mixture compositions change. Accordingly, the mechanism for the solution process of SD and SMT in water-rich mixtures is enthalpy driven, whereas it is entropy driven for SMR. In a different way, in 1-propanol-rich mixtures the mechanism is enthalpy driven for SD and SMR and entropy driven for SMT. Ultimately, in almost all of the intermediate compositions, the mechanism is enthalpy driven. Nevertheless, the molecular events involved in the solution processes remain unclear.  相似文献   

16.
Absolute reaction rates for F + HX and F + DX (X = I, Br, Cl) have been obtained by monitoring the rise time of HF (DF) vibrational fluorescence following multiphoton dissociation of SF6 in mixtures of HX (DX) and argon. The cross sections for reaction are, in units of 10?16 cm2, 4.37, 5.26, and 1.16 for HI, HBr, and HCl, respectively. The isotope effects kHX/kDX, are 1.29 ± 0.14, 1.29 ± 0.18, and 1.38 ± 0.29, respectively.  相似文献   

17.
The standard potentials of the silver-silver bromide electrode have been determined over a broad range of methanol concentrations from e.m.f. measurements of the cell Pt, H2(g, 1 atm); HBr(m), X% methanol, Y% water; AgBr, Ag at eight temperatures ranging from 20 to 55°C. The standard e.m.f. has been expressed as a function of temperature. Thermodynamic functions of cell process, the primary medium effect of various media on hydrobromic acid, and thermodynamics of transfer of HBr from water to methanolic media have been computed and discussed in the light of ion-solvent interactions as well as the structural changes of the solvents.  相似文献   

18.
Standard potentials EM0 at 25, 50 and 75°C of all-solid-state silver-silver chloride ring membrane electrodes (Schott) with pressed-in silver foil have been measured with respect to the Pt, H2 electrode by means of a cell without transference (see also [1]) applied earlier by Bates and Bower who measured standard potentials E0 of corresponding electrodes of the 2nd kind. The data evaluated by the extended Debye-Hückel theory can directly be compared with the reported 2nd kind electrode data. Identical thermodynamic behavior of both electrode types is observed; small differences (<1.5 mV) of standard potentials and their temperature dependence are discussed on the basis of different states of electrode materials orignating from different electrode preparation and are applied to calculate thermodynamic data of membrane electrodes referred to those of electrodes of the 2nd kind. The results and contradictory literature data are discussed. A brief characterization of membrane and 2nd kind electrodes is given.  相似文献   

19.
The values of the thermodynamic second dissociation constant, pK 2, and related thermodynamic quantities of N-(2-hydroxyethyl)piperazine-N′-2-hydroxypropanesulfonic acid (HEPPSO) have already been reported from 5 to 55?°C, including 37?°C, by the emf method. This paper reports the results for the pH of one chloride-free buffer solution containing the composition: (a) HEPPSO (0.08 mol?kg?1)+NaHEPPSO (0.04 mol?kg?1). The remaining seventeen buffer solutions contain a saline medium of ionic strength I=0.16 mol?kg?1, matching closely that of physiological fluids. Conventional pH values, denoted as pa H, for all eighteen buffer solutions from 5 to 55?°C have been calculated. The operational pH values, designated as pH, with residual liquid-junction corrections for five buffer solutions, one without NaCl, and four with buffer solutions in saline media of I=0.16 mol?kg?1 are recommended as pH standards in the range of physiological application. These are based on the NBS/NIST standard scale for pH measurements.  相似文献   

20.
The rate of change of the standard chemical potential with solvent composition, \(\partial \bar G_0 /\partial Z\) , has been calculated from precise vapor-pressure measurements for urea at three temperatures and for thiourea at 298.15°K in water-tetrahydrofuran (THF) mixtures. From these results the standard free energy of transfer ΔG t o of the solutes from water to various water-THF mixtures has been obtained together with the standard molar entropy ΔS t o and the standard molar enthalpy ΔH t o of transfer at 298.15°K in the case of urea. The quantity ΔG t o for urea is negative in the water-rich region and positive for mole fractions THF>0.2. There is a nearly complete compensation between ΔH t o andTΔS t o at 298.15°K up to mole fraction THF=0.5. These phenomena can be partly related to the structure in H2O-THF mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号