首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Due to the importance of neuraminidase in the pathogenesis of influenza virus infection, it has been regarded as the most important drug target for the treatment of influenza. Resistance to currently available drugs and new findings related to structure of the protein requires novel neuraminidase 1 (N1) inhibitors. In this study, a consensus QSAR model with defined applicability domain (AD) was developed using published N1 inhibitors. The consensus model was validated using an external validation set. The model achieved high sensitivity, specificity, and overall accuracy along with low false positive rate (FPR) and false discovery rate (FDR). The performance of model on the external validation set and training set were comparable, thus it was unlikely to be overfitted. The low FPR and low FDR will increase its accuracy in screening large chemical libraries. Screening of ZINC library resulted in 64,772 compounds as probable N1 inhibitors, while 173,674 compounds were defined to be outside the AD of the consensus model. The advantage of the current model is that it was developed using a large and diverse dataset and has a defined AD which prevents its use on compounds that it is not capable of predicting. The consensus model developed in this study is made available via the free software, PaDEL-DDPredictor.  相似文献   

2.
3.
This article provides an overview of an advanced combinatorial material discovery platform developed recently for screening semiconductor materials with properties that may have applications ranging from radiation detectors to solar cells. Semiconductor thin-film libraries, each consisting of 256 materials of different composition arranged into a 16×16 matrix, were fabricated using laser-assisted evaporation process along with a combinatorial mechanism to achieve variations. The composition and microstructure of individual materials on each thin-film library were characterized with an integrated scanning micro-beam x-ray fluorescence and diffraction system, while the band gaps were determined by scanning optical reflection and transmission of the libraries. An ultrafast ultraviolet photon-induced charge probe was devised to measure the mobility and lifetime of individual thin-film materials on semiconductor libraries. Selected results on the discovery of semiconductors with desired band gaps and transport properties are illustrated.  相似文献   

4.
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost-effective approach when starting new drug discovery projects. If structures of active compounds are available rapid 2D similarity search can be performed on multimillion compounds’ databases. This in silico approach can be combined with physico-chemical parameter filtering based on the property space of the active compounds and 3D virtual screening if the structure of the target protein is available. A multi-step virtual screening procedure was developed and applied to select potential phosphodiesterase 5 (PDE5) inhibitors in real time. The combined 2D/3D in silico method resulted in the identification of 14 novel PDE5 inhibitors with <1 μMIC50 values and the hit rate in the second in silico selection and in vitro screening round exceeded the 20%.  相似文献   

5.
Combinatorial library screening offers a rapid process for identifying potential therapies to toxins. Hinge peptide libraries, which rely on conformational diversity rather than traditional molecular diversity, reduce the need for huge numbers of syntheses and screening steps and greatly expedite the discovery process of active molecules. Hinge peptide libraries having the structures: Acetyl-X1–X2–hinge–X3–X4–NH2 (capped) and X1–hinge–X2–X3 (uncapped), where X1 through X4 are near-equimolar mixtures of twelve L-amino acids and hinge = 4-aminobutyric acid, were screened for inhibitory activity in bioassays for botulinum neurotoxins A and B (BoNT/A, BoNT/B) and saxitoxin. The zinc protease activity of the reduced light chains of BoNT/A and /B was assayed by measuring the cleavage of synthetic substrates. Saxitoxin activity was measured by the restoration of the viability of neuroblastoma cells treated with ouabain and veratridine. Deconvolution of libraries was accomplished by fixing one position at a time beginning with the C-terminus. Primary library subsets in which position 4 was fixed showed moderate levels of inhibition for BoNT/A. Secondary library subsets showed stronger inhibition in the bioassays. In each of the bioassays, inhibitory potency was stronger when the second position to be fixed was on the opposite side of the hinge, rather than on the same side with respect to the C-terminus, suggesting that the hinge facilitates the interaction of side chains. Inhibitors for all three of the toxins studied were discovered within library subsets, although not necessarily in primary subsets. These studies demonstrate that (1) the best strategy for deconvoluting hinge peptide libraries is by fixing residues alternately on each side of the hinge moiety, and (2) it is essential to investigate secondary subsets even when primary subsets are inactive. The present findings support the concept that the increased flexibility imposed by the inclusion of a central hinge residue in small peptides increases the opportunity for side chain interactions, providing a distinct advantage for hinge peptide libraries over conventional peptide libraries. Hinge peptide libraries are a rich source of novel ligands for modulation of biomechanisms. The library subsets uncovered in this study may possess peptides that will lead to effective therapies to neurotoxin poisoning.  相似文献   

6.
Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of Compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anti-cancer drugs. These illustrate library focusing strategies.  相似文献   

7.
Ullah  Shafi  Khan  Shafi Ullah  Khan  Abbas  Junaid  Muhammad  Rafiq  Humaira  Htar  Thet Thet  Zhao  Yaxue  Shah  Syed Adnan Ali  Wadood  Abdul 《Molecular diversity》2022,26(3):1399-1409

Anterior Gradient 2 (AGR2) has recently been reported as a tumor biomarker in various cancers, i.e., breast, prostate and lung cancer. Predominantly, AGR2 exists as a homodimer via a dimerization domain (E60-K64); after it is self-dimerized, it helps FGF2 and VEGF to homo-dimerize and promotes the angiogenesis and the invasion of vascular endothelial cells and fibroblasts. Up till now, no small molecule has been discovered to inhibit the AGR2–AGR2 homodimer. Therefore, the present study was performed to prepare a validated 3D structure of AGR2 by homology modeling and discover a small molecule by screening the FDA-approved drugs library on AGR2 homodimer as a target protein. Thirteen different homology models of AGR2 were generated based on different templates which were narrowed down to 5 quality models sorted by their overall Z-scores. The top homology model based on PDB ID?=?3PH9 was selected having the best Z-score and was further assessed by Verify-3D, ERRAT and RAMPAGE analysis. Structure-based virtual screening narrowed down the large library of FDA-approved drugs to ten potential AGR2–AGR2 homodimer inhibitors having FRED score lower than ? 7.8 kcal/mol in which the top 5 drugs’ binding stability was counter-validated by molecular dynamic simulation. To sum up, the present study prepared a validated 3D structure of AGR2 and, for the first time reported the discovery of 5 FDA-approved drugs to inhibit AGR2–AGR2 homodimer by using structure-based virtual screening. Moreover, the binding of the top 5 hits with AGR2 was also validated by molecular dynamic simulation.

Graphic abstract

A validated 3D structure of Anterior Gradient 2 (AGR2) was prepared by homology modeling, which was used in virtual screening of FDA-approved drugs library for the discovery of prospective inhibitors of AGR2–AGR2 homodimer.

  相似文献   

8.
Molecular Diversity - The current study was aimed to discover potent inhibitors of α-glucosidase enzyme. A 25 membered library of new 1,2,3-triazole derivatives of hydrochlorothiazide (1)...  相似文献   

9.
MMP-12 belongs to a large family of proteases called matrix metalloproteinases (MMPs) that degrades elastin. The main pathologic role of MMP-12 overexpression was suggested to be associated with pathogenesis mechanism of inflammatory respiratory diseases and atherosclerosis. An integrated ligand- and structure-based virtual screening was employed in hope of finding inhibitors with new scaffolds and selectivity for MMP-12. Seven compounds among 18 experimentally tested compounds had a measurable effect on the inhibition of MMP-12 enzyme. Our results demonstrated the applicability of the developed pharmacophore model and selected crystal structure (PDB code: 3F17) to discover new MMP-12 inhibitors. The receptor structure was selected based on cross-docking results. Here, we report the discovery of new class of MMP-12 inhibitors that could be used for lead optimization. For the inhibition of MMP-12, the significance of its interactions with the catalytic residues Glu219 and Ala182 was emphasized through the inspection of the docking poses.  相似文献   

10.
Peptide and peptide-like structures are regaining attention in drug discovery. Previous studies suggest that bioactive peptides have diverse structures and may have physicochemical properties attractive to become hit and lead compounds. However, chemoinformatic studies that characterize such diversity are limited. Herein, we report the physicochemical property profile and chemical space of four synthetic linear and cyclic combinatorial peptide libraries. As a case study, the analysis was focused on penta-peptides. The chemical space of the peptide and N-methylated peptides libraries was compared to compound data sets of pharmaceutical relevance. Results indicated that there is a major overlap in the chemical space of N-methylated cyclic peptides with inhibitors of protein–protein interactions and macrocyclic natural products available for screening. Also, there is an overlap between the chemical space of the synthetic peptides with peptides approved for clinical use (or in clinical trials), and to other approved drugs that are outside the traditional chemical space. Results further support that synthetic penta-peptides are suitable compounds to be used in drug discovery projects.  相似文献   

11.
Combinatorial chemistry is expanding rapidly both in terms of chemistry development and application to the synthesis of compound libraries for lead discovery and optimization. Combinatorial technologies continue evolving and developing, in fact they are being used as basic research tools in different fields that include peptide/protein folding. This review examines the use of combinatorial chemistry in the design of peptides and protein domains that adopt beta-sheet conformations. In particular, the use of conformationally restricted peptide libraries has allowed the identification of linear peptides that are folded in a beta-hairpin structure in plain aqueous solutions.  相似文献   

12.
A glutaminyl cyclase (QC) fragment library was in silico selected by disconnection of the structure of known QC inhibitors and by lead-like 2D virtual screening of the same set. The resulting fragment library (204 compounds) was acquired from commercial suppliers and pre-screened by differential scanning fluorimetry followed by functional in vitro assays. In this way, 10 fragment hits were identified (\(\sim \)5 % hit rate, best inhibitory activity: 16 \(\upmu \hbox {M}\)). The in vitro hits were then docked to the active site of QC, and the best scoring compounds were analyzed for binding interactions. Two fragments bound to different regions in a complementary manner, and thus, linking those fragments offered a rational strategy to generate novel QC inhibitors. Based on the structure of the virtual linked fragment, a 77-membered QC target focused library was selected from vendor databases and docked to the active site of QC. A PubChem search confirmed that the best scoring analogues are novel, potential QC inhibitors.  相似文献   

13.
Summary Phosphorus has been used as a scaffold to prepare combinatorial libraries of phosphoramidates in which one of the diversity elements resulted from derivatives of amino acids. A small library was prepared for analytical and characterization purposes, followed by a larger library of approximately 8800 compounds. Libraries were assembled on solid supports using the conventional pool-and-divide method, followed by cleavage from the supports at the end of the synthesis. Mass spectrometry was used to confirm that library synthesis had been successful. Individual compounds were also prepared to study the stability of compounds of this type.  相似文献   

14.
Natural product analogs are significant sources for therapeutic agents. To capitalize efficiently on the effective features of naturally occurring substances, a natural product-based library production platform has been devised at Aurigene for drug lead discovery. This approach combines the attractive biological and physicochemical properties of natural product scaffolds, provided by eons of natural selection, with the chemical diversity available from parallel synthetic methods. Virtual property analysis, using computational methods described here, guides the selection of a set of natural product scaffolds that are both structurally diverse and likely to have favorable pharmacokinetic properties. The experimental characterization of several in vitro ADME properties of twenty of these scaffolds, and of a small set of designed congeners based upon one scaffold, is also described. These data confirm that most of the scaffolds and the designed library members have properties favorable to their utilization for creating libraries of lead-like molecules.These authors have contributed equally to this work.  相似文献   

15.
Summary A single-step cancer cell cytotoxic assay system for anticancer drug discovery has been developed which facilitates rapid screening of large combinatorial chemical libraries synthesized using the one-bead-one-compound (OBOC) methodology. Each OBOC library bead incorporates two orthogonally cleavable linkers that release the bead-bound compound at a different pH. The assay utilizes high concentrations of tumor cells mixed directly with OBOC beads and plated in soft agarose containing tissue culture medium. One of the orthogonal linkers is cleaved at neutral pH in tissue culture releasing an aliquot of compound to diffuse at a relatively high local concentration into the soft agarose immediately surrounding the bead. Active compounds are identified visually from a clear ring of tumor cell lysis which forms within 48 h around just the rare bead releasing a cytotoxic compound. The bead releasing a cytotoxin is then plucked from the agar and the remaining compound still linked to the bead can be released for structural analysis, followed by compound resynthesis and confirmatory testing. This assay system has been successfully applied to identification of lead cytotoxic compounds from model peptidic and non-peptidic combinatorial chemical libraries. Use of this methodology may facilitate anticancer drug discovery.  相似文献   

16.
Summary We describe the construction and screening of a random peptide library displayed by filamentous phage. The peptides are expressed in multiple copies on the filamentous phage M13 as amino-terminal fusions with the major coat protein, the product of gene VIII. These libraries are efficiently screened for reactive peptides, using a combination of panning in solution followed by a plaque lift assay. Advantages of this system are that both high- and low-affinity phage clones are simultaneously identified and the analysis of non-reactive phage is minimized. The vector system utilized to construct this library enables it to be used for the construction of peptide libraries employing a combinatorial cloning strategy. This feature makes it especially suitable for construction of peptide libraries using codon-based oligonucleotide synthesis. The vectors also allow rapid optimization and modification of lead peptides by codon-based mutagenesis. A 20-amino acid long random peptide library of 1 × 109 members was constructed and screened for peptides that bound to (i) a monoclonal antibody recognizing the amino-terminus of -endorphin; (ii) a monoclonal antibody recognizing a peptide epitope derived from the v -ros oncogene product; and (iii) the constant region of murine IgG2b. The approach described here provides a means for the construction of customized libraries that can be screened with a variety of target molecules.  相似文献   

17.
混合评价核数据库HENDL1.0/MG/MC研制   总被引:1,自引:0,他引:1  
根据世界几个主要核评价数据库,如ENDF/B 6(美国)、JEF 2.2(欧盟)、JENDL 3.2(日本)、BROND 2.2(俄罗斯)、CENDL 2.1(中国)和FENDL 2(IAEA/NDS),兼顾聚变、裂变以及聚变 裂变次临界混合堆设计研究的多种需要,经过甄别、筛选,最后集成为包含213个核素的基本评价文件,名为HENDL1.0/E的核评价数据库.在此基础上,利用目前流行的群常数加工程序系统NJOY和输运截面制备程序TRANSX制作两套用于中子或/和光子输运计算的输运截面工作库:①参考Vitamin J能群结构制作了175群中子和42群光子、中子 光子耦合多群工作数据库HENDL1.0/MG,可用于离散纵标Sn法程序计算;②连续能群结构、紧凑ENDF(ACE)格式中子截面库HENDL1.0/MC,可用于蒙特卡罗方法输运计算,如MCNP.另外还制作了可用于燃耗(嬗变)计算的燃耗库BURNUP.LIB和响应函数库RESPONSE.LIB两个专用数据库.同时,也对HENDL1.0综合评价核数据库的有效性进行了抽样测试、基准检验和初步确认. A Hybrid Evaluated Nuclear Data Library(HENDL) named as HENDL1.0 has been developed by Fusion Design Study (FDS) team of Institute of Plasma Physics, Academia Sinica (ASIPP) to take into account the requirements in design and research relevant to fusion, fission and fusion-fission sub-critical hybrid reactor. HENDL1.0 contains one basic evaluated sub-library naming HENDL1.0/E and two processed working sub-libraries naming HENDL1.0/MG and HENDL1.0/MC, respectively. Through carefully comparing...  相似文献   

18.
19.
Combinatorial library design can be carried out at either the reagent or the product level. Various reports in the literature have come to conflicting conclusions in favor of one over the other. In this paper a reagent-based screening library design strategy is presented. The method relies on analysis of scaffolds and building blocks separately to define the overall diversity in a compound file. The primary diversity selection by properties relevant for molecular recognition and by redundancy is followed by the application of filters for molecular properties known to be relevant for drug-likeness. Filter properties are rapidly estimated at the product level using a fragmental estimation approach. Initial experimental data suggest that high diversity in vast screening libraries can be achieved by carefully applied reagent level analysis. A potential role of diverse screening libraries in chemical genomics (pharmacological knockouts) is also discussed.  相似文献   

20.
The potentiation of central cholinergic activity has been proposed as a therapeutic approach for improving cognitive function in patients with Alzheimer's disease. Increasing the acetylcholine concentration in brain by modulating acetylcholinesterase (AChE) activity is among the most promising strategies. We have used a combinatorial approach to identify different 2,5-piperazinediones (DKP) with AChE inhibitory activity. Our goal was to find inhibitors exhibiting high AChE/BuChE (butyrylcholinesterase) selectivity, in order to reduce the undesirable side effects elicited by most of the inhibitors that have been developed to date. Screening of a DKP library constructed on solid-phase using the multiple parallel synthesis format, resulted in the identification of several compounds with moderate efficacy on AChE. In particular, DKP-80 had an IC50 = 2.2 microM with no significant inhibitory activity on BuChE. Moreover, estimated values of Clog P and log BB for the most active compounds fulfilled the bioavailability requirements for enzyme inhibitors acting on the central nervous system. In order to understand the inhibitory properties of the ligand at the molecular level, molecular dynamics simulations were computed on DKP-80 complexed to AChE, and the most relevant binding interactions of this inhibitor to the active center of the enzyme were characterized. Overall the present results indicate that the DKP-based compounds identified are novel AChE inhibitors which may be considered likely lead compounds for further development of drug candidates against Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号