首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of luminescent ion exchanged zeolite are synthesized by introducing various ions into NaY zeolite. Monometal ion (Eu3+, Tb3+, Ce3+, Y3+, Zn2+, Cd2+, Cu2+) exchanged zeolite, rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Y3+ and rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Zn2+ are discussed here. The resulting materials are characterized by Fourier transform infrared spectrum radiometer (FTIR), XRD, scanning electronic microscope (SEM), PLE, PL and luminescence lifetime measurements. The photoluminescence spectrum of NaY indicates that emission band of host matrix exhibits a blueshift of about 70 nm after monometal ion exchange process. The results show that transition metal ion exchanged zeolites possess a similar emission band due to dominant host luminescence. A variety of luminescence phenomenon of rare‐earth ion broadens the application of zeolite as a luminescent host. The Eu3+ ion exchanged zeolite shows white light luminescence with a great application value and Ce3+ exchanged zeolite steadily exhibits its characteristic luminescence in ultraviolet region no matter in monometal ion exchanged zeolite or bimetal ions exchanged zeolite.  相似文献   

2.
Copper doped ceria porous nanostructures with a tunable BET surface area were prepared using an efficient and general metal–organic-framework-driven, self-template route. The XRD, SEM and TEM results indicate that Cu2+ was successfully substituted into the CeO2 lattice and well dispersed in the CeO2:Cu2+ nanocrystals. The CeO2:Cu2+ nanocrystals exhibit a superior bifunctional catalytic performance for CO oxidation and selective catalytic reduction of NO. Interestingly, CO oxidation reactivity over the CeO2:Cu2+ nanocrystals was found to be dependent on the Cu2+ dopants and BET surface area. By tuning the content of Cu2+ and BET surface area through choosing different organic ligands, the 100% conversion temperature of CO over CeO2:Cu2+ nanocrystals obtained from thermolysis of CeCu–BPDC nanocrystals can be decreased to 110 °C. The porous nanomaterials show a high CO conversion rate without any loss in activity even after five cycles. Furthermore, the activity of the catalysts for NO reduction increased with the increase of BET surface, which is in accordance with the results of CO oxidation.  相似文献   

3.
The yttrium organic framework (Y0.89Tb0.10Eu0.01)6(BDC)7(OH)4(H2O)4 (BDC=benzene-1,4-dicarboxylate) is hydrothermally stable up to at least 513 K and thermally stable in air in excess of 673 K. The relative intensities of luminescence of Tb3+ and Eu3+ are governed by Tb3+-to-Eu3+ phonon-assisted energy transfer and Tb3+-to-ligand back transfer and are responsible for the differing temperature-dependent luminescence of the two ions. This provides a ratiometric luminescent thermometer in the 288–573 K temperature range, not previously seen for MOF materials, with a high sensitivity, 1.69±0.04 % K−1 at 523 K. In aqueous conditions, loosely bound H2O can be replaced by D2O in the same material, which modifies decay lifetimes to yield a quantitative luminescent D2O sensor with a useful sensitivity for practical application.  相似文献   

4.
The compositions and photophysical properties of luminescent ternary complexes of thiacalix[4]arene‐p‐sulfonate (TCAS), TbIII, and AgI ions were determined. At pH 6, AgI2?TbIII2?TCAS2 formed. Moreover, at pH 10, in the presence of a 20‐fold excess of AgI and a 50‐fold excess of TCAS with respect to TbIII, AgI2?TbIII?TCAS2 formed as the main luminescent species. The structure of these complexes was proposed: two TCAS ligands are linked by two S–AgI–S linkages to adopt a double‐cone supramolecular structure. Furthermore, each TbIII ion in the former complex accepts O?, S, O? donation, whereas in the latter, the TbIII center accepts eightfold O? donation. The luminescence quantum yield (Φ) of AgI2?TbIII2?TCAS2 (0.16) was almost equal to that of TbIII?TCAS, but the luminescence lifetime τ of the former (=1.09 ms) was larger than that of the latter. For AgI2?TbIII?TCAS2, the yield Φ (=0.11) was small, which is attributed to the low efficiency of photosensitization (η=0.11). However, the τ value (4.61 ms) was exceptionally large and almost equal to the natural luminescence lifetime of TbIII (4.7 ms), which is due to the absence of coordinating water molecules (q=0.1). This is compatible with the proposed structure in which the TbIII ion is shielded by a supramolecular cage that expels coordinated water molecules responsible for luminescence quenching.  相似文献   

5.
Herein we report the synthesis of propanoic acid functionalized ionic liquids (ILs) with various lengths of alkyl chain on the imidazole ring. The synthesized propanoic acid functionalized ILs were used to dissolve Eu2O3 (or Tb4O7) due to the formation of europium(III) (or terbium(III)) carboxylate, aimed to get soft luminescent materials combining the properties of ILs and attractive luminescent properties of lanthanide ions. The luminescent behavior of Eu3+ and Tb3+ in the ILs were investigated by luminescence spectroscopy. The affect of the alkyl chain on the luminescent behavior (the asymmetry parameter (R), the lifetime of 5D0, and the 5D0 quantum efficiency) of Eu3+ has been discussed.  相似文献   

6.
Two macrobicyclic ligands derived from an 18‐membered tetralactam ring and 2,2′‐bipyridine or 2,6‐bis(pyrazol‐1‐yl)pyridine moieties, 1 and 2 , respectively, form stable complexes with GdIII, EuIII, and TbIII ions in aqueous solution. The ligand‐based luminescence is retained in the GdIII cryptates, whereas this radiative deactivation is quenched in the EuIII and TbIII cryptates by ligand‐to‐metal energy transfer, resulting in the usual metal‐centered emission spectra. Singlet‐ and triplet‐state energies, emission‐decay lifetimes, and luminescence yields were measured. [Tb⊂ 1 ]3+ cryptate shows a long luminescence lifetime (τ=1.12 ms) and a very high metal luminescence quantum yield (Φ=0.25) in comparison with those reported in the literature for Tb3+ complexes sensitized by a bipyridine chromophore. By comparison to [Ln⊂ 1 ]3+, [Ln⊂ 2 ]3+ presents markedly lower luminescence properties, due to worse interaction between the 2,6‐bis(pyrazol‐1‐yl)pyridine unit and the metal ion. Moreover, the luminescent metal and the triplet ligand energy levels of [Eu⊂ 2 ]3+ do not match. The effects of H2O molecules coordinated to the metal centre and of thermally activated decay processes on nonradiative deactivation to the ground‐state are also reported.  相似文献   

7.
Highly uniform and well‐dispersed CaF2 hollow spheres with tunable particle size (300–930 nm) have been synthesized by a facile hydrothermal process. Their shells are composed of numerous nanocrystals (about 40 nm in diameter). The morphology and size of the CaF2 products are strongly dependent on experimental parameters such as reaction time, pH value, and organic additives. The size of the CaF2 hollow spheres can be controlled from 300 to 930 nm by adjusting the pH value. Nitrogen adsorption–desorption measurements suggest that mesopores (av 24.6 nm) exist in these hollow spheres. In addition, Ce3+/Tb3+‐codoped CaF2 hollow spheres can be prepared similarly, and show efficient energy transfer from Ce3+ to Tb3+ and strong green photoluminescence of Tb3+ (541 nm, 5D47F5 transition of Tb3+, the highest quantum efficiency reaches 77 %). The monodisperse CaF2:Ce3+/Tb3+ hollow spheres also have desirable properties as drug carriers. Ibuprofen‐loaded CaF2:Ce3+/Tb3+ samples still show green luminescence of Tb3+ under UV irradiation, and the emission intensity of Tb3+ in the drug‐carrier system varies with the released amount of ibuprofen, so that drug release can be easily tracked and monitored by means of the change in luminescence intensity. The formation mechanism and luminescent and drug‐release properties were studied in detail.  相似文献   

8.
In this paper, according to the molecular fragment principle, a series of eight ternary luminescent lanthanide complex systems were assembled, and whose compositions were determined with elemental analysis and infrared spectrum: Ln(MA)3(L)·H2O, where Ln = Sm, Eu, Tb, Dy; HMA = α‐methylacrylic acid; L = 1,10‐phenanthroline (phen), 2,2′‐bipyridine (bipy). The photophysical properties of these functional molecular systems were studied with ultraviolet‐visible absorption spectrum, and fluorescence excitation and emission spectrum. It was found that the heterocylic compounds (phen and bipy) act as the main energy donor and luminescence sensitizer for their suitable energy match and effective energy transfer to the emission energy level of Ln3+ ions. MMA ligand was only used as the terminal structural ligand to influence the luminescence. Especially terbium complex systems show the strongest luminescence for the optimum energy match and transfer between phen (bipy) and Tb3+ ion.  相似文献   

9.
Terbium ion doped MO–Al2O3 (M = Mg, Ca, Sr and Ba) series phosphors have been synthesized through combustion technique and their luminescence properties have been studied and compared. Terbium ion in different phosphors has shown different fluorescence properties due to the presence of different ratios of Tb3+ and Tb4+ states in different samples. The UV/Visible absorption and XPS techniques have been used to probe the existence of Tb3+ and Tb4+ states. The host sensitive 4f–5d and the charge transfer transitions enabled the use of terbium ion as an indicator of the structure.  相似文献   

10.
We report on Tb3+ as efficient sensitizer for red photoemission from Mn2+-centers in ZnO-B2O3-Al2O3-Si2O-Na2O-SrO glasses and corresponding gahnite glass ceramics. In comparison to singly or co-doped glasses, the glass ceramics exhibit significantly increased emission intensity. Structural considerations, ESR, and dynamic luminescence spectroscopy indicate partial incorporation of Mn2+ as well as Tb3+ into the crystalline phase, the former on octahedral Zn2+-sites. Interionic distance and charge transfer probability between both species depend on crystallization conditions. This enables control of the energy transfer process and, hence, tunability of the color of photoemission by simultaneous emission from Tb3+ and Mn2+ centers. Concentration quenching in Mn2+-singly doped materials was found at a critical dopant concentration of about 1.0 mol%. The energy transfer process was studied in detail by dynamic as well as static luminescence spectroscopy. Spectroscopic results suggest the application of the studied materials as single or dual-mode emitting phosphor for luminescent lighting.  相似文献   

11.
Three different cerium citrate-based precursors were used for synthesizing CeO2 through thermal treatment. Three morphological types of CeO2 were obtained. Characterization of these oxides was carried out by XRD patterns, SEM microscopy, N2 adsorption isotherms, Raman spectroscopy, zeta potential, and UV/Vis luminescence. Ozonation of phenol catalyzed by CeO2 was studied as a representative reaction of environmental interest. The differences on the catalytic activity showed by these three oxides could be correlated to amounts of Ce3+ on CeO2 surface and, consequently, to the demand for oxygen needed to burn each precursor.  相似文献   

12.
Chitosan membranes with trivalent lanthanide ion Eu3 + were prepared at a ratio of 3:1 w/w (chitosan:lanthanide). There was no membrane formation at a ratio of 1:1 w/w (chitosan: Eu3 + or Tb3 +); in this case a white solid powder was obtained. Both chitosan compounds were characterized by elemental analysis (CHN), thermal analysis (TG/DTG), scanning electron microscopy (SEM) and luminescence spectroscopy. CHN analysis was performed only for chitosan compounds in powder form, suggesting that these compounds have the general formula QUILn.6H2O, where QUI = Chitosan and Ln = Eu3 + or Tb3 +. The results of TG/DTG curves for chitosan membranes with Eu3 + ion indicate that the introduction of this metal into the chitosan structure causes gradual degradation in residual carbons, showing lower weight loss in the Eu3 + membranes compared to pure chitosan membrane. Analysis of luminescence demonstrated that chitosan membranes with Eu3 + ion exhibit emission in the visible region, showing emission bands from chitosan and Eu3 + moieties. For chitosan with Eu3 + and Tb3 + ions compounds, in powder form, the analysis of luminescence suggested that chitosan is not transferring energy to the lanthanide ion; however, the chemical region where the lanthanide ion is found breaks the selection rules and favors the emission of these ions.  相似文献   

13.
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu3+ and Tb3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu3+ is strongly dependent on the pH values in weakly acidic to neutral media (pKa = 5.8, pH 4.8–7.5), while that of HTTA–Tb3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu3+ and HTTA–Tb3+ (the HTTA–Eu3+/Tb3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb3+ emission at 540 nm to its Eu3+ emission at 610 nm, I540 nm/I610 nm, as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu3+/Tb3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A290 nm/A325 nm, as a signal. This feature enables the HTTA–Eu3+/Tb3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA–Eu3+ and HTTA–Tb3+ into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.  相似文献   

14.
《化学:亚洲杂志》2017,12(7):768-774
Bridged polysilsesquioxanes (BPs) show great potential in the development of lanthanide‐based luminescent materials, owing to their capacity to loading lanthanide complexes with high concentration and their flexible processability. A novel BP precursor, consisting of a C 3‐symmetrical benzene central core moiety, capable of sensitizing the luminescence of Eu3+ and Tb3+ is reported. Tunable, full‐color luminescent gels were facilely prepared by mixing the as‐synthesized precursor and Ln3+ ions in appropriate solvents. By either changing the Eu3+/Tb3+ molar ratio or altering the excitation wavelength, the emission colors of the final gels can be finely tuned. Additionally, the yellow‐colored emissive gel with a molar ratio of Eu3+ to Tb3+ of 0.5 can be used as an effective ratiometric luminescent sensor for distinguishing amines with lower pK a (<5) from those with higher pK a (>9).  相似文献   

15.
The crystal structure of SrLaBO4 contains triangular borate groups. The luminescence of mercury-like ions (Sn2+, Sb3+, Tl+, Pb2+, Bi3+) in this host lattice is characterized by a large Stokes shift. The Pb2+ is a very efficient activator at room temperature. The luminescent properties are discussed in terms of earlier models related to an off-center position of the metal ion. The emission of Eu3+ shows that the crystal structure has a disordered nature and confirms an off-center position. Energy transfer from Pb2+ to Eu3+ and Tb3+ was studied and found to be inefficient.  相似文献   

16.
Color‐tunable luminescence has been extensively investigated in upconverting nanoparticles for diverse applications, each exploiting emissions in different spectral regions. Manipulation of the emission wavelength is accomplished by varying the composition of the luminescent material or the characteristics of the excitation source. Herein, we propose core–shell β‐NaGdF4: Tm3+, Yb3+/β‐NaGdF4: Tb3+ nanoparticles as intrinsic time‐tunable luminescent materials. The time dependency of the emission wavelength only depends on the different decay time of the two emitters, without additional variation of the dopant concentration or pumping source. The time‐tunable emission was recorded with a commercially available camera. The dynamics of the emissions is thoroughly investigated, and we established that the energy transfer from the 1D2 excited state of Tm3+ ions to the higher energy excited states of Tb3+ ions to be the principal mechanism to the population of the 5D4 level for the Tb3+ ions.  相似文献   

17.
CeO2:Er3+ powders were prepared by Pechini type sol-gel method. The structural properties of CeO2:Er3+ were studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectra. The results show that CeO2:Er3+ has low phonon cutoff energy, which indicate that CeO2:Er3+ may have high luminescent efficiency. The green and red upconverted luminescence spectra of Er3+ were investigated under excitation into the 4I9/2 level by 785 nm laser. The upconversion mechanisms were studied in detail through laser power dependence and Er3+ ions concentration dependence of upconverted emissions, and results show that excited state absorption and energy transfer process are the possible mechanisms for the upconversion. The upconversion properties indicate that CeO2:Er3+ may be used in upconversion phosphors.  相似文献   

18.
Rare earth complex Tb(DPC)22H2O was synthesized by introducing Pyridine-2,6-dicarboxylic acid(H2DPC) as the ligand and characterized by UV, fluorescent and infrared spectra as well as elemental analysis. The complex exhibited ligand-sensitized green emission, and it has the higher sensitized luminescent efficiency and longer lifetime. The effect and mechanism of the ligand (H2DPC) on the luminescence properties of terbium complex was discussed. In device ITO/PVK/Tb(DPC)22H2O/Al, Tb3+ may be excited by intramolecular energy transfer from ligand as observed by electroluminescence. The main emitting peak at 545 nm can be attributed to the transition of 5D47F5 of Tb3+ ion and this process results in the enhancement of green emission from electroluminescence device.  相似文献   

19.
A lanthanide‐complex‐based ratiometric luminescence probe specific for peroxynitrite (ONOO?), 4′‐(2,4‐dimethoxyphenyl)‐2,2′:6′,2′′‐terpyridine‐6,6′′‐diyl]bis(methylenenitrilo)tetrakis(acetate)‐Eu3+/Tb3+ ([Eu3+/Tb3+(DTTA)]), has been designed and synthesized. Both [Eu3+(DTTA)] and [Tb3+(DTTA)] are highly water soluble with large stability constants at ≈1020, and strongly luminescent with luminescence quantum yields of 10.0 and 9.9 %, respectively, and long luminescence lifetimes of 1.38 and 0.26 ms, respectively. It was found that the luminescence of [Tb3+(DTTA)] could be quenched by ONOO? rapidly and specifically in aqueous buffers, while that of [Eu3+(DTTA)] did not respond to the addition of ONOO?. Thus, by simply mixing [Eu3+(DTTA)] and [Tb3+(DTTA)] in an aqueous buffer, a ratiometric luminescence probe specific for time‐gated luminescence detection of ONOO? was obtained. The performance of [Tb3+(DTTA)] and [Eu3+/Tb3+(DTTA)] as the probes for luminescence imaging detection of ONOO? in living cells was investigated. The results demonstrated the efficacy and advantages of the new ratiometric luminescence probe for highly sensitive luminescence bioimaging application.  相似文献   

20.
X-rays are energy sources exhibiting extended penetration depths, and they have attracted increasing attention in industry and for clinical application. With the rapid development of nanomaterials and X-ray excited luminescent nanoparticles (XLNPs), new modalities for bioimaging and cancer therapy have been developed, such as X-ray luminescent computed tomography (XLCT) and X-ray excited photodynamic therapy (X-PDT). To meet the requirements of biomedical applications, XLNPs must exhibit high luminescence intensities, appropriate size distributions (less than100 nm) and negligible cytotoxicity. Due to the optical properties associated with f-electrons, rear earth (RE) elements are highly suitable for creating XLNPs. NaREF4 nanoparticles (NPs) have been shown to be suitable hosts with high luminescence intensities, controllable sizes, and biocompatibility for X-ray-based biomedical applications. Syntheses of NaLuF4 NPs doped with rare earth elements for upconversion applications have been systematically studied. However, for X-ray excited applications, the doping levels of the NPs must be totally different, which greatly affects the morphologies and sizes of the NaLuF4 NPs. Thus, in this paper, nucleation, phase transitions, morphologies and sizes, and luminescence properties of Tb3+-doped NaLuF4 NPs were systematically studied. OA-capped NaLuF4:Tb3+ NPs were synthesized via coprecipitation processes with different reaction temperatures and reaction times to study the nucleation mechanism systematically, and the morphologies, size distributions and crystal phases were characterized with TEM and XRD. The morphologies, size distributions and crystal phases of these NPs were seriously influenced by the reaction temperature and reaction time. At 295 ℃, the NP sizes increased with prolonged reaction time, and the crystalline phase was a mixture of cubic and hexagonal phases. At 300 ℃ and 310 ℃, the pure hexagonal phase was obtained after 20 min and 35 min reaction times, respectively. The luminescence strengths of these NPs were associated with the particle sizes, crystalline phases, and Tb3+ doping levels. Stronger luminescence was achieved with larger particle sizes and purer hexagonal crystal phases. In addition, the 15 % doping level for Tb3+ provided the maximum luminescence intensity. The present work provides insights into the mechanism of NaLuF4:Tb3+ nanocrystal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号