首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(8)MgLa(PO(4))(7):Ce(3+),Mn(2+) phosphors have been prepared by a conventional solid state reaction under a weak reductive atmosphere. The crystal structure and photoluminescent properties were investigated. It was found that the red emission at 640nm originated from the (4)T(1)((4)G)→(6)A(1)((6)S) transition of Mn(2+) increases dramatically by a factor of 6.4 with the optimum Ce(3+) co-doping. The energy transfer from Ce(3+) to Mn(2+) was proposed to be resonance-type via an electric dipole-dipole mechanism and the energy transfer efficiency was also calculated by the relative emission intensity. With the broadband ultraviolet (UV) absorption of Ce(3+) and the suitable color coordinates, Ca(8)MgLa(PO(4))(7):Ce(3+),Mn(2+) phosphors might be a promising candidate as red phosphors in the field of UV-based white light-emitting diodes.  相似文献   

2.
In this study, a series of Sr1-xZrO3:xSm (x = 0.01 ≤ x ≤ 0.11) samples were synthesized using the sol-gel process. X-ray diffraction (XRD), scanning electron microscope (SEM), UV–visible and photoluminescence (PL) spectroscopy were employed to analyze these phosphors. The reporting of the bandgap energies (Eg), for which the diffuse-reflectance spectra of the Sr0.97ZrO3:Sm0.03 phosphor was used, is based on the Kubelka–Munk (K–M) function. Under the 406 nm excitation, the three Sm3+-emission transitions 4G5/26H5/2 (562 nm), 4G5/26H7/2 (599 nm), and 4G5/26H9/2 (644 nm) were observed for all the samples. The diminishing Sm3+-emission intensity that was observed was analyzed in the evaluation of the critical transfer rate (Rc) and the energy-transfer interaction parameter (Q). The CIE-chromaticity color coordinates of the Sm3+-doped SrZrO3 indicate that the prepared phosphors may act as an orange-emitting-light converter for the white LED.  相似文献   

3.
The development of high-brightness far-red-emitting phosphors with emission wavelength within 650–750 nm is of great significance for indoor plant cultivation light-emitting diode (LED) lighting. Herein, we demonstrate a novel efficient far-red-emitting phosphors CaMg2La2W2O12:Mn4+ (abbreviated as CMLW:Mn4+) toward application in plant cultivation LEDs. Interestingly, the CMLW:Mn4+ phosphors show a broad excitation band in the 250–600 nm spectral range with two peaks at 352 and 479 nm, indicating they could be efficiently excited by near-ultraviolet and blue light. Under 352 nm excitation, the CMLW:Mn4+ phosphors exhibit an intense far-red emission band in the wavelength range of 650–800 nm peaking at 708 nm, corresponding to the 2Eg → 4A2g transition of Mn4+ ions. Mn4+ doping concentration-dependent luminescence properties are studied in detail, and the concentration quenching mechanism is also investigated. Particularly, the internal quantum efficiency of CMLW:Mn4+ phosphors reaches as high as 44%, and their PL spectra match well with the absorption spectrum of phytochrome PFR (PFR stands for far-red-absorbing form of phytochrome). Furthermore, a prototype LED device is fabricated by coating the as-prepared CMLW:0.8%Mn4+ phosphors on a 460 nm blue LED chip, which produces bright far-red emissions upon 20–300 mA driving currents. This work reveals that the newly discovered far-red-emitting CMLW:Mn4+ phosphors hold great potential for application in indoor plant cultivation.  相似文献   

4.
The Ce3+ activated phosphors Ca4Si2O7F2:Ce3+ are prepared by a solid state reaction technique. The UV–vis luminescence properties as well as fluorescence decay time spectra are investigated and discussed. The results revealed that there were two kinds of Ce3+ luminescence behavior with 408 and 470 nm emissions, respectively. Under 355 nm excitation, the Ce(1) emission (408 nm) is dominant at low doping concentration, and then the Ce(2) emission (470 nm) get more important with increasing of Ce3+ concentrations in the host. The phosphors Ca4Si2O7F2:xCe3+ show tunable emissions from blue area to green-blue area under near-ultraviolet light excitation, indicating a potential application in near-UV based w-LEDs.  相似文献   

5.
Uniform shuttle-like Ln3+ (Eu3+, Tb3+) doped NaLa(WO4)2 nanocrystals have been solvothermally synthesized, and the size of the nanocrystals could be easily controlled by adjusting the volume ratio of ethylene glycol (EG) to water. Doped with 5 mol% Eu3+ and Tb3+ ions, the NaLa(WO4)2 nanocrystals showed strong red and green emissions with lifetimes of 0.8 and 1.40 ms, respectively. A high quenching concentration of 15 mol% was observed in Eu3+-doped NaLa(WO4)2 nanocrystals and 35 mol% in Tb3+-doped NaLa(WO4)2 nanocrystals. The emission intensity measurements of Eu3+-doped NaLa(WO4)2 with different sizes indicated that the emission intensity of shuttles with length of 300 nm in average was stronger than that of shuttles with length of 900 nm in average, but was weaker than that of needles with length of 4 and 9 μm in average.  相似文献   

6.
The novel orange-red light emitting La7Ta3W4O30:xSm3+ (x = 0.005–0.20) phosphors were synthesized via the solid-state reaction method. The crystal structure, photoluminescence (PL) properties, optimum concentration, color purity, decay life, and thermal stability of the samples were systematically studied. Under the excitation of 404 nm, La7Ta3W4O30:Sm3+ emits intense orange-red light at 597 nm. The PL spectra of La7Ta3W4O30:Sm3+ phosphors are ascribed to the 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2, and 11/2) transitions of Sm3+ ions. The concentration quenching occurs at the doping level of 1 mol%. The quenching temperature is higher than 500 K. Finally, a white LED (w-LED) with the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of (0.312, 0.296) and good color rendering index (Ra) of 86 was fabricated. As a consequence, all the results suggest that the orange-red phosphors La7Ta3W4O30:Sm3+ have potential applications in w-LEDs structures.  相似文献   

7.
The photoluminescence properties and energy transfer of the Eu(2+) and Mn(2+) co-doped Sr(3)Y(PO(4))(3) phosphors are investigated in detail. Two main emission bands attributed to the Eu(2+) and Mn(2+) ions are observed under UV light excitation via an efficient energy transfer process. When the Eu(2+) doping content is fixed, the emission chromaticity can be varied by simply adjusting the content of Mn(2+). The study of the behavior as a function of doping concentration indicates that the warm white-light can be obtained in a single host lattice. Furthermore, the analysis of the fluorescence decay curves based on the Inokuti-Hirayama theoretical model reveals that the dipole-quadrupole interaction is mainly responsible for the energy transfer mechanism from the Eu(2+) to Mn(2+) ions in the Sr(3)Y(PO(4))(3) phosphor. The developed phosphor exhibits a strong absorption in UV spectral region and white-light emission which may find utility as a single-component white-light-emitting UV-convertible phosphor in white LED devices.  相似文献   

8.
A series of Tm3+ and Dy3+ codoped BaWO4 phosphors with tunable shapes were controllably synthesized by a facile solvothermal method. The effects of ratio of ethylene glycol (EG) and water on the morphologies of BaWO4 structures are systematically studied. It was discovered that the reason for these morphological changes is based on the reaction speed of the kinetic control, which relates to the strong chelating abilities of ethylene glycol. And when the solvent is pure ethylene glycol, the peanut-like BaWO4:Dy3+ has the strongest emission intensity. Moreover, the emission color of the phosphors varied from blue (0.232, 0.180) to white (0.268, 0.250) by controlling Dy3+ ions content with a fixed Tm3+ concentration. The energy transfer mechanism was investigated in detail. With increasing the doped concentration of Dy3+ ions, the energy transfer efficiency of BaWO4:0.005Tm3+,yDy3+ increased gradually and reached as high as 63% when the Dy3+ doped concentration is 0.03. The critical distance RC calculated by the spectral overlap method is about 19.93 Å, and it is in good agreement with that obtained using the concentration quenching method (19.70 Å), indicating that the electric dipole-dipole interaction is the main energy transfer mechanism for BaWO4:Tm3+,Dy3+ phosphors.  相似文献   

9.
A series of yellow-emitting oxynitride Ca0.65Si10Al2O0.7N15.3:xEu2+ phosphors with α-sialon structure were synthesized. The phase composition and crystal structure were identified by X-ray diffraction and the Rietveld refinement. The excitation and emission spectra, reflectance spectra and thermal stability were investigated in detail, respectively. Results show that Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphors can be efficiently excited by UV-Vis light in the broad range of 290–450 nm and exhibit broad emission spectra peaking at 550–575 nm. The concentration quenching mechanism are discussed in detail and determined to be the dipole-dipole interaction. When the temperature increased to 150 °C, the emission intensity of Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphor is 88.46% of the initial value at room temperature. White LED was fabricated with N-UV LED chip combined with blue Ca3Si2O4N2:Ce3+ and yellow Ca0.65Si10Al2O0.7N15.3:Eu2+ phosphors. The color rendering index and correlated color temperature of this white LED were measured to 78.94 and 6728.12 K, respectively. All above results demonstrate that the as-prepared Ca0.65Si10Al2O0.7N15.3:xEu2+ may serve as a potential yellow phosphor for N-UV w-LEDs.  相似文献   

10.
11.
Nitridophosphates MP2N4:Eu2+ (M=Ca, Sr, Ba) and BaSr2P6N12:Eu2+ have been synthesized at elevated pressures and 1100–1300 °C starting from the corresponding azides and P3N5 with EuCl2 as dopant. Addition of NH4Cl as mineralizer allowed for the growth of single crystals. This led to the successful structure elucidation of a highly condensed nitridophosphate from single‐crystal X‐ray diffraction data (CaP2N4:Eu2+ (P63, no. 173), a=16.847(2), c=7.8592(16) Å, V=1931.7(6) Å3, Z=24, 2033 observed reflections, 176 refined parameters, wR2=0.096). Upon excitation by UV light, luminescence due to parity‐allowed 4f6(7F)5d1→4f7(8S7/2) transition was observed in the orange (CaP2N4:Eu2+, λmax=575 nm), green (SrP2N4:Eu2+, λmax=529 nm), and blue regions of the visible spectrum (BaSr2P6N12:Eu2+ and BaP2N4:Eu2+, λmax=450 and 460 nm, respectively). Thus, the emission wavelength decreases with increasing ionic radius of the alkaline‐earth ions. The corresponding full width at half maximum values (2240–2460 cm?1) are comparable to those of other known Eu2+‐doped (oxo)nitrides emitting in the same region of the visible spectrum. Following recently described quaternary Ba3P5N10Br:Eu2+, this investigation represents the first report on the luminescence of Eu2+‐doped ternary nitridophosphates. Similarly to nitridosilicates and related oxonitrides, Eu2+‐doped nitridophosphates may have the potential to be further developed into efficient light‐emitting diode phosphors.  相似文献   

12.
New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.  相似文献   

13.
Mn4+-activated double perovskite phosphors with composition diversity have presented excellent luminescent performances. However, the charge imbalance between Mn4+ and matrix cations would increase non-radiative recombination and reduce the structural stability. Here, novel high-efficiency stable Li+/Mn4+ co-incorporated Sr2YSbO6 red phosphors are successfully synthesized via a solid-state reaction method for warm w-LEDs, where the Li+ ions have the effect of charge balance for Sr2YSbO6:Mn4+ and reduce the non-radiative energy transfer among Mn4+ ions. It is demonstrated that the substitution of Li+–Mn4+ pairs for Sb5+ can enhance the bonding with low-shifted diffraction peaks and high emission intensity, and prolong the decay lifetime, compared with those of Mn4+ single-doped ones. Impressively, the thermal stability is enhanced to 89.72% from 84.61% at the original value of 303 K. Finally, a w-LED device based on the optimal phosphor Sr2YSbO6:0.01Mn4+/0.01Li+ red component exhibits a correlated color temperature of 4487 K and color rendering index of 80.2. Therefore, the incorporated Li+ ions serve as both charge compensator and co-activator in Mn4+-activated double perovskite phosphors with the aim of high luminescent performance and thermal stability.  相似文献   

14.
The polycrystalline powder samples of Eu3+ activated; mixed metal yttrium borate phosphors M3Y2(BO3)4 (M = Ba, Sr) with improved color purity of red emission for plasma display panels (PDPs) were prepared by solution combustion technique. The synthesis is based up on the exothermic reaction between the fuel (Urea) and oxidizer (Ammonium nitrate) .The heat generated in the reaction is utilized for auto combustion of ingredients. The formation of desired product and crystal structure was confirmed by powder XRD technique; while particle morphology was studied using FE-SEM. Samples under 254 and 147 nm excitation showed intense and pure red emission around 613 nm corresponding to the electric dipole 5D0 → 7F2 transition of Eu3+, CIE chromaticity coordinates of synthesized phosphors was found to be (x = 0.67, y = 0.32) close to National Television Standard Committee (NTSC) for red color; found suitable to employ in plasma display panels (PDPs) applications.  相似文献   

15.
Non-rare earth doped oxide phosphors with far-red emission have become one of the hot spots of current research due to their low price and excellent physicochemical stability as the red component in white light-emitting diodes (W-LEDs) and plant growth. Herein, we report novel Mn4+-doped La2CaSnO6 and La2MgSnO6 phosphors by high-temperature solid-phase synthesis and analyzed their crystal structures by XRD and Rietveld refinement. Their excitation spectra consist of two distinct excitation bands with the dominant excitation range from 250 to 450 nm, indicating that they possess strong absorption of near-ultraviolet light. Their emission is located around 693 and 708 nm, respectively, and can be absorbed by the photosensitive pigments Pr and Pfr, proving their great potential for plant growth. Finally, the prepared samples were coated with 365 nm UV chips to fabricate far-red LEDs and W-LEDs with low correlation color temperature (CCT = 4958 K/5275 K) and high color rendering index (Ra = 96.4/96.6). Our results indicate that La2CaSnO6:Mn4+ and La2MgSnO6:Mn4+ red phosphors could be used as candidate materials for W-LED lighting and plant growth.  相似文献   

16.
采用高温固相法合成了白光LED用红色荧光材料LixSr1-2xMoO4:Eux3+,对样品分别进行了X射线衍射(XRD)分析、扫描电镜测试(SEM)和荧光光谱的测定.测试结果表明,LixSr1-2xMoO4:Eux3+荧光粉可以被近紫外光(uv)(394 nm)和蓝光(464 nm)有效地激发,且与没有掺杂Li+的荧光粉SrMoO4:Eu3+相比,发光强度得到了明显的增强.同时也讨论Li+和Eu3+的掺杂浓度对发光强度的影响.  相似文献   

17.
结合稀土化学课程中的稀土发光材料和光学农业背景下研究生材料研究相关专业的特点,开设"Sr_(1.7)Ba_(1.3)MgSi_2O_8∶Eu~(2+), Mn~(2+)荧光玻璃陶瓷材料制备与表征"研究性综合实验项目,通过实验原理阐述、研究思路和方法的确立、材料制备、测试表征、数据处理等环节,使研究生充分掌握专业知识,并实践到研究工作中去,同时树立良好的学术诚信品德品质。实践表明,该实验项目选题针对性强,有助于提高学生的综合实验技能,有利于培养学生的基本科研素养,从而达到提高教育和教学质量的目的。  相似文献   

18.
Sr8MgCe(PO4)7:Eu2+,Mn2+ phosphor with whitlockite‐type structure was prepared by a combustion‐assisted solid‐state reaction. The crystal structure and luminescence properties were investigated. Under UV radiation, Sr8MgCe(PO4)7 host exhibits a violet‐blue emission band from Ce3+ ions. When Eu2+/Mn2+ are doped into the host, the samples excited with 270 nm UV radiation present multicolor emissions due to the energy transfer (ET) from Ce3+ to Eu2+/Mn2+. The emitting color of Sr8MgCe(PO4)7:Eu2+ can be tuned from violet‐blue to yellow‐green, whereas Sr8MgCe(PO4)7:Mn2+ can emit red light. Under excitation with long wavelength at 360 nm, Sr8MgCe(PO4)7:Eu2+ phosphor shows a broadband emission from 390 to 700 nm, which is attributed to the 4f65d1→4f7 transition of Eu2+ without the contribution from Ce3+ emission. Tunable full‐color emitting light can be achieved in the Eu2+ and Mn2+‐codoped Sr8MgCe(PO4)7 phosphor by ETEu–Mn through control of the levels of doped Eu2+ and Mn2+ ions. These results suggest that Sr8MgCe(PO4)7:Eu2+,Mn2+ phosphor has potential applications in NUV chip pumped white LEDs.  相似文献   

19.
Reaction of the Mn4O4(6+) "cubane" core complex, Mn4O4L6 (1) (L = diphenylphosphinate, Ph2PO2-), with a hydrogen atom donor, phenothiazine (pzH), forms the dehydrated cluster Mn4O2L6 (2), which has lost two mu-oxo bridges by reduction to water (H2O). The formation of 2 was established by electrospray mass spectrometry, whereas FTIR spectroscopy confirmed the release of water molecules into solution during the reduction of 1. UV-vis and EPR spectroscopies established the stoichiometry and chemical form of the pzH product by showing the production of 4 equiv of the neutral pz radical. By contrast, the irreversible decomposition of 1 to individual Mn(II) ions occurs if the reduction is performed using electrons provided by various proton-lacking reductants, such as cobaltocene or electrochemical reduction. Thus, cubane 1 undergoes coupled four-electron/four-proton reduction with the release of two water molecules, a reaction formally analogous to the reverse sequence of the steps that occur during photosynthetic water oxidation leading to O2 evolution. 1H NMR of solutions of 2 reveal that all six of the phosphinate ligands exhibit paramagnetic broadening, due to coordination to Mn ions, and are magnetically equivalent. A symmetrical core structure is thus indicated. We hypothesize that this structure is produced by the dynamic averaging of phosphinato ligand coordination or exchange of mu-oxos between vacant mu-oxo sites. The paramagnetic 1H NMR of water molecules in solution shows that they are able to freely exchange with water molecules that are bound to the Mn ion(s) in 2, and this exchange can be inhibited by the addition of coordinating anions, such as chloride. Thus, 2 possesses open or labile coordination sites for water and anions, in contrast to solutions of 1, which reveal no evidence for water coordination. Complex 2 exhibits greater paramagnetism than that of 1, as seen by 1H NMR, and it possesses a broad (440 G wide) EPR absorption, centered at g = 2, that follows a Curie-Weiss temperature dependence (10-40 K) and is visible only at low temperatures, compared to EPR-silent 1. Its comparison to a spin-integration standard reveals that 2 contains 2 equiv of Mn(II), which is in agreement with the formal oxidation state of 2Mn(II)2Mn(III) that was derived from the titration. The EPR and NMR data for 2 are consistent with a loss of two of the intermanganese spin-exchange coupling pathways, versus 1, which results in two "wingtip" Mn(II) S = 5/2 spins that are essentially magnetically uncoupled from the diamagnetic Mn2O2 base. Bond-enthalpy data, which show that O2 evolution via the reaction 1-->2 + O2, is strongly favored thermodynamically but is not observed in the ground state due to an activation barrier, are included. This activation barrier is hypothesized to arise, in part, from the constraining effect of the facially bridging phosphinate ligands.  相似文献   

20.
To date, luminescent materials have been preferably used for non-contact optical thermometers. In this manner, novel red-emitting Ba2Y0.8Eu0.2NbO6:Mn4+ (BYEN:Mn4+) phosphors were designed for multi-type non-contact luminescent thermometers based on the dual-emission states and temperature-dependent lifetime (TDL) models. In the temperature range of 303–483 K, the sensing sensitivities based on the dual-emission states of (5D07F2, 2Eg4A2g) and (5D07F1, 2Eg4A2g) were estimated. Especially, the maximum absolute sensing sensitivity (Sa) was found to be about 0.1558 K-1 for the BYEN:0.007Mn4+ phosphor based on the 5D07F1 and 2Eg4A2g positions. This phosphor also exhibited good relative sensing sensitivity (Sr) (0.0186 K-1) based on the 5D07F2 and 2Eg4A2g states. Besides, the relative sensing sensitivities (SR) at 5D07F1 and 2Eg4A2g transitions were estimated to be 0.0034 and 0.0194 K-1, respectively with the help of the TDL technique. In the light of these results, novel red-emitting Ba2Y0.8Eu0.2NbO6:Mn4+ phosphors are expected to be a potentially attractive candidate for applications in multi-type luminescent thermometers. Finally, a novel unique polydimethylsiloxane film exhibiting tricolor-luminescent emissions was introduced and further suggested for high-security anti-counterfeiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号